Unit 1 - Functions

Sep 7/2016

Review: Functions, Domain, and Range

A <u>relation</u> is any <u>set</u> of ordered pairs (x, y) relating an <u>independent variable</u> (typically x) to a <u>dependent variable</u> (typically y).

For example:

- (a) y = 3 x + 2 is the equation for a set of points.
- (b) $\{(0,1), (3,4), (2,-5)\}$ is a set of ordered pairs.

<u>Domain</u> is the <u>set</u> of all <u>possible</u> values for the independent variable.

Range is the <u>set</u> of all possible values for the dependent variable.

Feb 12-9:14 PM

A function is a special type of relation where each value of the independent variable yields only a single value of the dependent variable.

For example:

- (1) Set Notation: No x-value is repeated
- (2) Graph: If any vertical line passes through more than one point on the graph of a relation, it is not a function. This is known as the vertical line test.
- (3) Equation: Rearrange for y and ensure there is only a single value produced for any x.

Set Notation Examples:

"the set of all x, where x is a member of the real number set, such that x is less than 3"

$$\begin{cases} x \in \mathbb{R} | x < 3 \} \\ \text{type of} \\ \text{number} \end{cases}$$

Ex. Describe each set

(a)
$$\{y\in\mathbb{Z}|-5\leq y<3\}$$

$$-5,-4,-3,-2,-1,0,1,2$$
 (b) $\{z\in\mathbb{R}|z=\pi k,k\in\mathbb{Z}\}$

Aug 16-1:05 PM

Feb 21-10:02 PM

Feb 21-10:02 PM

The equation of a relation which is a function can be written using a special notation,

$$f(x) = 3x + 2$$

function notation.

"the result depends on x and is defined as 3x + 2"

On a graph, the y-axis is used to represent the value of the function, which we write as

$$y = f(x)$$

"the variable y is a function of the variable x"

1 05 10 10.201 11

Sep 8-1:58 PM

Sep 8-2:00 PM

Sep 8-2:04 PM

12.
$$f(x)$$

 $f(4) = 7$
 $f(6) = 1+2+3+6$ $6 = 2 \times 3$
 $= 1 \times 6$
 $f(7) = 1+7$
 $f(8) = 1+2+4+8$
 $f(15) = 1+3+5+15$

Untitled 2.mml