The absolute value of a real number is the non-negative value of that number (since zero is neither positive or negative).

$$
|3|=3 \quad|0|=0 \quad|-5|=5
$$

On a number line, the absolute value measures the distance from the origin to the value (distance is never negative).

Ex. Represent the absolute values of 3,0 , and -5 using a number line.

Function Notation:

$$
f(x)=|x|, x \in \mathbb{R}
$$

Using our definition of absolute value, we can reason

$$
\begin{aligned}
& \text { if: } \quad x \geq 0, f(x)=x \\
& \text { if: } \quad x<0, f(x)=-x
\end{aligned}
$$

This allows for a piecewise

$$
f(x)=\left\{\begin{array}{cl}
x, & x \geq 0 \\
-x, & x<0
\end{array}\right.
$$

Graphical Representation:

For the parent function, $f(x)=|x| \quad$, we can construct a table of values, or consider the piecewise definition.

$$
f(x)=-x, x<0 \quad f(x)=x, x \geq 0
$$

Title : Sep 2-9:13 PM (Page 3 of 7)

A quadratic equation is typically solved:

$$
\begin{aligned}
x^{2} & =9 \\
x & = \pm \sqrt{9} \\
x & = \pm 3
\end{aligned}
$$

The absolute value yields a similar looking final form:

$$
\begin{aligned}
|x| & =3 \\
x & = \pm 3
\end{aligned}
$$

You may see a quadratic solution expressed as:

$$
\begin{aligned}
& x^{2}=9 \\
& |x|=\sqrt{9} \\
& |x|=3
\end{aligned}
$$

Title : Sep 2-9:32 PM (Page 5 of 7)

$$
\begin{array}{ccc}
\text { Ex. Solve }|x-2|=3 & \text { let } A=x-2 \\
x-2=3 & x-2=-3 & |A|=3 \\
x y=5 & x=-1 & \\
& & A=3 \\
& & \text { OR } \\
& & A=-3
\end{array}
$$

Assigned Work:
p. 16 \# 3-10

$$
\text { 10. } \begin{aligned}
y & =3-|2 x-5| \\
& =-|2 x-5|+3
\end{aligned}
$$

