Determining Transformed Functions from Graphs
Recall: Given $y=a f[k(x-p)]+q$
Sept 12/2016

1. vertical scaling by a for $a \neq 1$ (includes vertical reflection for $a<0$)
2. horizontal scaling by $\frac{1}{k}$ for $k \neq 1$ (includes reflection)
3. horizontal translation by p
4. vertical translation by q

$$
f(3 x) \quad \text { h.canpossining } 3
$$

h. stretch my $\frac{1}{3}$
(c) h. compression by $\frac{1}{3}$ text h. scaling by $\frac{1}{3}$ ok

$$
y=a f[k(x-p)]+q
$$

For any single point, the transformations can be summarized as:

$$
(x, y) \rightarrow\left(\frac{x}{k}+\underset{2}{p}, a y+q\right)
$$

Given two sets of points (before and after
transformation), use logic, deductive reasoning, and
linear systems a, k, p, and q of equations to determine values for

$$
\begin{aligned}
y & =(2 x)^{2} \\
& =4 x^{2}
\end{aligned}
$$

Tips for parabolas: $\quad y=a(x-p)^{2}+q$

1. The vertex of the parent function is at $(0,0)$. The value zero is not affected by scaling (a or k), only translations (p or q). The vertex will be at (p, q).
2. Parabolas can ignore the horizontal scaling,
k, because there is an equivalent 'a' value.
Set $k=1$.

3. Use the step pattern $(1,3,5, \ldots)$ from the vertex to determine the vertical scaling, 'a'.

Tips for radicals: $\quad y=a \sqrt{k(x-p)}+q$

1. The parent function starts at $(0,0)$, just like a parabola. The value zero is not affected by scaling (a or k), only translations (p or q).
2. The sign of 'a' and ' k ' are
3. Use
' k ' for scaling. The horizontal scaling $i \quad s$ more likely to give a "nice" (integer) value.

Set a to -1 or +1 (depending on v. reflection).
Solve for k.

Title : Mar 3-6:57 PM (Page 4 of 9)

Tips for rationals: $y=\frac{a}{k(x-p)}+q$

1. The parent function has asymptotes at $x=0$ and $y=0$.

The new asymptotes will be at $x=p$ and $y=q$.
2. Use only one of 'a' or ' k ' for scaling and reflection.

$$
y=\frac{1}{3(x-2)} \Leftrightarrow y=\frac{1}{3} \times \frac{1}{x-2}
$$

'a' is usually easier to work with, so set $k=1$.

$$
\begin{aligned}
& \text { Assigned Work: } \\
& \text { p. } 36 \neq 4,5,5,7,9,10,10, i 5,16 \mathrm{abo} \\
& \text { b } \\
& \stackrel{b}{d}
\end{aligned}
$$

4. $(x, y) \rightarrow\left(\frac{x}{k}+p, a y+q\right)$
(b) $y=f(x-3)$

3 units right

$$
p=3
$$

$$
(2,3) \longrightarrow(5,3)
$$

10. $f(x)=\sqrt{x}$
(b) $h(x)=2 f(x-1)+4$

$$
\begin{cases}\vdots(1,4), & D=\{x \in \mathbb{R} \mid x \geqslant 1\} \\ & R=\{y \in R \mid y \geqslant 4\}\end{cases}
$$

Title : Sep 13-12:39 PM (Page 7 of 9)

$$
\begin{gathered}
q(f) \quad p(1,8) \text { on } y=f(x) \\
y=0.5 f\left[\begin{array}{c}
x-p \\
a \\
\underset{k}{0.5(x+3)]}+3 \\
p=-3 \\
q
\end{array}\right. \\
(1,8) \xrightarrow{a}(1,4) \xrightarrow{k}(2,4) \rightarrow(-1,4) \rightarrow(-1,7) \\
(x, y) \rightarrow\left(\frac{x}{k}+p, a y+q\right)
\end{gathered}
$$

15. $(3,6)$ on $y=2 f(x+1)-4$

$$
\begin{array}{cc}
(x, y) \rightarrow\left(\frac{x}{k}+p, a y+q\right) \\
\frac{x}{1}-1=3 & 2 y-4=6 \\
\frac{x}{1}=4 & 2 y=10 \\
x=4 & y=5
\end{array}
$$

