

The instantaneous rate of change is the slope of the tangent line \quad at a particular point of interest, defined by a specified value of the independent variable (e.g., at $x=a$).		
	(a) a (b) a (c) a	or now, we can only estimate is value by determining the average rate of change over a very all interval near $\mathrm{x}=\mathrm{a}$. preceding interval uses a point before the point of interest. following interval uses a point after the point of interest. centred interval uses points on either side of the point interest.

Preceding Interval

Following Interval

Title : Sep 10-10:59 AM (Page 4 of 11)

Title : Sep 10-11:00 AM (Page 5 of 11)

Title : Sep 9-9:09 PM (Page 6 of 11)

In general, we algebraically represent the estimated instantaneous rate of change as a difference quotient.

For $x=a \quad$, the point of interest is $\quad P(a, f(a))$
The following point occurs at $x=a+h \quad$, where h is an aribitrarily small value, giving a second point

$$
Q(a+h, f(a+h))
$$

$$
\begin{aligned}
\operatorname{avg} \mathrm{RoC} & =m_{P Q} \\
& =\frac{f(a+h)-f(a)}{(a+h)-a} \\
& =\frac{f(a+h)-f(a)}{h}
\end{aligned}
$$

To estimate instantaneous rate of change:
(a) Use a series of preceding and following intervals, keeping the point of interest constant. As the intervals get smaller and smaller, look for the trend in values.
(b) Use a series of centred intervals and look for the trend.
(c) Use the difference quotient for very small values of h (both positive and negative work).

The best estimates come from the smallest intervals.

In general, we will use a following interval and very small values of h.

Assigned Work:
p. 76 \# 8 (9)
p. 85 \# 4, 7, 9, 10, 15
d b
$p .76 \# q \quad h(t)=18 t-0.8 t^{2}$

$$
\begin{aligned}
& 10 \leq t \leq 15 \\
& t_{1} \quad t_{2}
\end{aligned}
$$

$$
\begin{aligned}
& 10 \leq t \leq 15 \\
& t_{1} \\
& \text { augRoC }=\frac{h\left(t_{2}\right)-h\left(t_{1}\right)}{t_{2}-t_{1}}
\end{aligned}
$$

$$
=\frac{h(15)-h(10)}{15-10}
$$

$$
=\frac{\left[18(15)-0.8(15)^{2}\right]-\left[18(10)-0.8(10)^{2}\right]}{5}
$$

$$
=-2
$$

$$
\begin{aligned}
& P .85 \\
& \# 7(d) \quad P(t)=-1.5 t^{2}+36 t+6 \\
& P(t)
\end{aligned}
$$

9. $h(t)=10+2 t-4.9 t^{2}$
(a) $\operatorname{set} h(t)=0$

$$
t \doteq 1.647
$$

