

Recall: If-Then-Else

In general, we test a condition, and depending on
the result, we execute some statements

If (condition) then
statements for condition TRUE

else
statements for condition FALSE

end if

Recall: Conditions

● if (age < 16) then...
● if (sum >= 12) then...
● if (ratio > 4/3) then...
● if (street = “Main”)...
● if (city not= "Ottawa")...

Remember that all conditions must resolve to
either TRUE or FALSE values:

Recall: Testing Multiple Conditions

Not all situations can be handled by a single
condition such as (a>b). As our selection process
becomes more complex, we can expand our use
of the basic if-then-else construct.

1. nested “if” statements
2. “else if” statements
3. logical operators

Recall: Variables & Data Types
We store information in memory, and the specific
location in memory is called a variable (because
its value can vary).

When we declare a variable:
1. a space is reserved in memory for that data
2. a name is reserved to identify that data

When we declare variables, we also specify the
data type. This is done to help the computer
understand what we expect to use the variable
for.

Boolean Variables

We have previous discussed the primitive data
types of integer and real. Most programming
languages also include a boolean data type,
which is used to store values of TRUE or FALSE.

When naming boolean variables, always try to
choose a name that answers a clear question:

var isRaining : boolean
var needUmbrella : boolean
var gameOver : boolean

Example: Prime Numbers
(basic code)

var number : int

put "Enter a number between 1 and 10: " ..
get number

if (number = 2 or number = 3
 or number = 5 or number = 7) then
 put number, " is prime."
else
 put number, " is not prime."
end if

Example: Prime Numbers v2
(detect invalid input)var number : int

put "Enter a number between 1 and 10: " ..
get number

if (number >= 1 and number <= 10) then
 if (number = 2 or number = 3
 or number = 5 or number = 7) then
 put number, " is prime."
 else
 put number, " is not prime."
 end if
else
 put "Invalid number!"
end if

Example: Prime Numbers v3
(use boolean variables)

var number : int
var isValid, isPrime : boolean

put "Enter a number between 1 and 10: " ..
get number

isValid :=number >= 1 and number <= 10
isPrime := number = 2 or number = 3 or number = 5 or number = 7

if (isValid) then
 if (isPrime) then
 put number, " is prime."
 else
 put number, " is not prime."
 end if
else
 put "Invalid number!"
end if

Boolean Variables: Complexity

As with many examples, you might think adding
boolean variables has made our code more
complex, and was not worth doing.

In reality, it has made our program a bit longer,
but at the same time, the code is easier to read.
The purpose of each variable is quite clear, and
the IF statements are now very clear.

What if we needed to detect a prime number later
in our program?

Example: Prime Numbers v4
(use isPrime multiple times & ways)

put "Enter a number between 1 and 10: " ..
get number

isValid :=number >= 1 and number <= 10
isPrime := number = 2 or number = 3 or number = 5 or number = 7

if (isPrime and isValid) then
 ...

if (isPrime or not isValid) then
 ...

if (not isPrime and isValid) then
 ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

