To solve an inequality, find all values that satisfy the inequality.
Consider: $3 x-1<8$
The simplest way to visualize the solution is to graph and compare the LS and RS:

Where is the line $y=3 x-1$ less than the line $y=8$?
$x<3$

We have also solved such inequalities by:
(1) solving the corresponding equation, then
(2) testing values around the solutions).
(1) Solve

$$
\begin{array}{r}
3 x-1=8 \\
3 x=9 \\
x=3
\end{array}
$$

(2) Test 8 < \qquad and $\mathrm{x}>3$

$$
3 x-1<8
$$

test $x=2$

$$
\begin{aligned}
\angle S & =3 x-1 \\
& =3(2)-1 \\
& =5 \\
R S & =8 \\
C S & <R S V
\end{aligned}
$$

test $x=4$

$$
\begin{aligned}
1 S & =3(4)-1 \\
& =12-1 \\
& =11 \\
R S & =8 \\
C S & <R S X
\end{aligned}
$$

$$
3 x-1<8
$$

(1) Solve $3 x-1=8$

$$
\begin{aligned}
3 x & =9 \\
x & =3
\end{aligned}
$$

(2) Test $x<3: 3(2)-1=5$, pass

$$
\text { Test } x>3: 3(4)-1=11
$$

The solution can be represented as:
(a) set notation: $\quad\{x \in \mathbb{R} \mid x<3\}$
(b) interval notation: $\quad x \in(-\infty, 3)$
(c) a number line:

Algebraic Operations on Inequalities
What are the effects of adding, subtracting, multiplying, and dividing on a very simple inequality?

Start with $4<8$, which is obviously true.
add positive:

$$
6<10
$$

add negative:

$$
3<7
$$

subtract positive:

subtract negative:

$$
14<18
$$

multiply by positive:

$$
-1>-2
$$

Solving Inequalities Algebraically:

We can use the same basic operations (add, subtract, multiply, divide) that we would with a regular equation.

Note: When multiplying or dividing by a negative value, the direction of the inequality must be switched.

Ex. Solve

$$
\text { (a) } \begin{aligned}
2 x-3 & >5 \\
\frac{2 x}{2} & >\frac{8}{2} \\
x & >4
\end{aligned}
$$

(b) $\frac{-1}{3}(x+4) \leq-7$

$$
x+4 \geqslant 21
$$

$x \geqslant 17$

For a double-inequality, perform each operation on all parts simultaneously.

Ex. Solve $10 \leq 3(2 x-5)-(3 x-7)<25$.
Express your solution using:
(a) set notation,
(b) interval notation,
(c) a number line.

$$
\begin{array}{lr}
10 \leq 6 x-15-3 x+7<25 \\
10 \leq 3 x-8 & <25 \\
+8 & +8 \\
\frac{18}{3} \leq \frac{3 x}{3} & \frac{33}{3} \\
6 \leq x<11 &
\end{array}
$$

Assigned Work
p. 213 \# 5bdf, 6be, (1bdy, 89,1, 15. 19
b
(b) $-6 x<x+4<12$
test $x=0$:

$$
\begin{array}{lll}
\frac{L S}{-6(0)} & \frac{m}{0+4} & \frac{R S}{12} \\
=0 & =4 &
\end{array}
$$

$$
\because \angle S<M<R S
$$

$\therefore 0$ is a solution
8.

$$
\begin{gathered}
x>4 \\
+x \quad+x \\
2 x>x+4 \\
-1 \quad-1 \\
2 x-1>x+3
\end{gathered}
$$

11.

$$
\begin{gathered}
\frac{1}{2} x+1 \leqslant 3 \text { or } \frac{1}{2} x+1>3 \\
x \\
x
\end{gathered}
$$

$$
\begin{aligned}
& \text { 19. (d) } \frac{-3 x^{3}}{-3} \geqslant \frac{81}{-3} \\
& x^{3} \leqslant-27 \\
& x^{3}+27 \leqslant 0
\end{aligned}
$$

