Recall:

For any angle of interest (θ), there are three (3) primary trigonometric ratios.

SohCahToa

Apr 25-9:54 PM

Radian Angles on the Cartesian Plane

The Special Triangles can be used to identify exact values for trigonometric ratios of special angles.

Radian Angles on the Cartesian Plane $\quad \operatorname{Oct} 26 / 2016$ An angle is in standard position if the vertex is at the origin and the initial arm is along the positive x-axis.

This angle can be described in terms of the point (x, y) at the end of the terminal arm,

$$
\csc \theta=\frac{r}{y} \quad \sec \theta=\frac{r}{x} \quad \cot \theta=\frac{x}{y}
$$

Apr 25-10:21 PM

The related acute angle (RAA) is the positive, acute angle between the nearest x-axis and the terminal arm.

$$
\begin{aligned}
& \begin{array}{l}
\text { RAAC }+\frac{5 \pi}{6}=\pi \\
\operatorname{RAA}=\frac{5 \pi}{6} \\
\operatorname{RAA}=\pi-\frac{5 \pi}{6}
\end{array} \\
& =\frac{6 \pi}{6}-\frac{5 \pi}{6} \\
& =\frac{\pi}{6}
\end{aligned}
$$

$$
\begin{aligned}
& \text { where: } \quad r^{2}=x^{2}+y^{2} \\
& r^{2}=x^{2}+y^{2} \\
& \sin \theta=\frac{y}{r} \quad \cos \theta=\frac{x}{r} \quad \tan \theta=\frac{y}{x}
\end{aligned}
$$

The CAST rule allows us to quickly determine the sign of each trig ratio for any quadrant.

Q2	Q1 sine positive
all positive	
tangent positive	cosine positive
Q3	

Use the CAST rule, along with the Related Acute Angle (RAA) to solve for the angle.

May 3-9:19 AM

Ex. 1 Evaluate using Cartesian definitions \& special triangles.

Oct 23-11:07 PM

Ex. 2 Solve $\tan \theta=\frac{-7}{24}$ for $0 \leq \theta<2 \pi$
(1) RAA?

$$
\tan (R A A)=\frac{7}{24}
$$

$$
R A A=\tan ^{-1}\left(\frac{7}{24}\right)
$$

$R A A \doteq 0.2838$
(2)

$$
\begin{aligned}
\theta & =\pi-R A A \\
& \doteq \pi-0.2838 \\
& \doteq 2.8578
\end{aligned}
$$

Q4:

Oct 23-11:11 PM

Assigned Work:
p. 330 \# 1-4, 5ace, 6ace, 7ace, 8 @e(1), 13
(f) $\cot \left(\frac{7 \pi}{4}\right)$
$=\frac{1}{\tan \left(\frac{7 \pi}{4}\right)}$
$R A A=\frac{\pi}{4}$

$$
b(a)
$$

$\pi \leq \theta \leq 2 \pi$

$$
\cos \theta=\frac{-1}{2}
$$

(1) RAA

$$
\begin{aligned}
\cos R A A & =\frac{1}{2} \\
R A A & =\frac{\pi}{3}
\end{aligned}
$$

(2) CAST

Q3:

$$
\begin{aligned}
& \theta=\pi+\frac{\pi}{3} \\
& \theta=\frac{4 \pi}{3}
\end{aligned}
$$

Oct 27-12:42 PM

8(c) RAA $0<\operatorname{RAA}<\frac{\pi}{2}$

$$
\begin{aligned}
& \csc \left(-\frac{\pi}{3}\right)=\frac{1}{\sin \left(-\frac{\pi}{3}\right)} \\
& \text { RAA }=\frac{\pi}{3}
\end{aligned}
$$

(2) $\frac{s \mid A}{T(c)} \quad \csc \left(-\frac{\pi}{3}\right)=-\csc \left(\frac{\pi}{3}\right)$
9.

$$
\begin{aligned}
& \sin \alpha=\frac{3.4}{5} \\
& \alpha=\sin ^{-1}\left(\frac{3.4}{5}\right) \\
& \alpha=0.7478 \\
& \theta=\pi-\alpha \\
& \theta=2.3938
\end{aligned}
$$

11.

