

Applications of Arrays

Some Sample Array Declarations

// array of 10 student grades (integers)
int grades[];
grades = new int[10];

// average temperatures for each month
double avgTemp[];
avgTemp = new double[12];

// e-mail list for 100 members
String mailList[] = new String[100];

Frequency Table

A common programming problem involves
tracking:

(a) a limited number of options, with
(b) unknown, or unlimited, repetitions

For example, a "fair die" is a die which has equal
probabilities of rolling any face (1 to 6). If
simulating a fair die using a random number
generator, how can we test this?

Frequency Table
With 6 possible rolls (1 to 6), we require an array
with a length of 6. Each element will be used to
count, or accumulate, the total rolls of each side.

int[] dieRolls = new int[6];
or
int[] dieRolls = {0, 0, 0, 0, 0, 0};

Note: By default, Java sets all integer values to
zero. Good coding practice, however, would
include code to initialize all starting values.

Frequency Table

int numRolls, roll;
int[] dieRolls = new int[6];

// how many test rolls?
numRolls = In.getInt();

for (int i = 0; i < numRolls; i++)
{
 // simulate 0-5, since arrays start
 // at zero, not one
 roll = (int)(6 * Math.random());
 dieRolls[roll] = dieRolls[roll] + 1;
}

Linking Data Across Arrays
One of the limitations of an array is the fact that it
may only contain a single data type (e.g., integers
or Strings).

Many applications of data involve the mixing of
data types in a useful way. For example, student
data may include a student ID (int), multiple
strings (names, address), and grades (double).

Yet for possibly hundreds or thousands of
students, arrays make sense.

Linking Data Across Arrays

For large sets of data, arrays make sense. When
multiple data types are required, it is possible to
use multiple arrays and link the data using the
index of the array.

This requires each array to be the same length.
In addition, the contents of each arrays must align
according to the index. All index '0' data must
align, all index '1' data, etc.

Linking Data Across Arrays

For example, consider the months of the year and
the number of days in each. While there are other
ways to track this, two linked arrays will work.

String[] monthName = {"Jan", "Feb", "Mar", ...};
int[] monthDays = {31, 28, 31, ...};

To use these arrays, we could write a program
which prompts the user for a number of days and
then outputs all months matching that number.

Linking Data Across Arrays
String[] monthName = {"Jan", "Feb", "Mar", ...};
int[] monthDays = {31, 28, 31, ...};

System.out.print("How many days? ");
int numDays = In.getInt();

for (int i = 0; i < monthName.length; i++)
{

if (monthDays[i] == numDays)
{

System.out.println(monthName[i]);
}

}

Comparing Arrays
Arrays are complex data structures, and that
complexity means simple comparisons between
arrays are not possible.

We have already seen an example of this complexity
with strings. To compare a string, we are required to
use a special command.

string1.equals(string2)

The equivalent command for arrays is:

Arrays.equal(array1, array2)

Comparing Arrays
While comparing arrays this way is easy, it also
does not teach anything about array structures
and programming.

You must be able to compare two arrays, element
by element, by writing the code yourself.

For this course, any use of the
"Arrays.equals()" command will be
interpreted as you not knowing how to compare
arrays, with appropriate deductions on
assignments.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

