Many phenomena in the natural sciences (physics, chemistry, biology, astronomy) can be described using exponential functions. To solve problems involving a function, it is often useful to use the inverse function.

Ex. 1 Given $f(x)=10^{x}$

$$
\begin{aligned}
\text { (a) } \begin{array}{rlrl}
f(3) & =10^{3} & \text { (b) Solve } f(x) & =100 \\
& =1000 & 10^{x} & =100 \\
\text { (c) Solve } & f(x)=37 & 10^{x} & =10^{2} \\
10^{x}=37 & \therefore x & =2
\end{array}, r l
\end{aligned}
$$

$$
10^{1}=10 \quad 10^{2}=100
$$

$$
\operatorname{try} 10^{1.5} \doteq 31.6
$$

$$
10^{1.6}=39.8 \quad \log \left(10^{x}\right)=\log 37
$$

$$
10^{1.58} \doteq 38.0
$$

$$
x=\log _{10} 37
$$

$$
10^{1.56}=36.3
$$

$$
x=1.5682
$$

$$
10^{1.57} \doteq 37.15
$$

$$
\begin{aligned}
& x \rightarrow f(x) \rightarrow y \\
& 3 \rightarrow f(x) \rightarrow 75
\end{aligned}
$$

$$
75 \rightarrow f^{-1}(x) \longrightarrow 3
$$

Title : Nov 26-9:02 PM (Page 1 of 6)

Invented by John Napier in the 17th century, logarithmic functions (and the associated tables of values generated using them) were the only effective numerical tools for dealing with exponential functions until the development of computers and calculators.

Some applications of logarithmic functions include:
pH levels (acid/base) in chemistry
exponential growth/decay in biology
sound intensity in physics/music
light intensity \& absorption in physics/astronomy
richter scale (earthquakes) in physics/geology

Recall:
(1) To find an inverse, swap x and y.
(2) A function and its inverse undo each other.

Exponential Relation:

$$
y=a^{x}, a>0, a \neq 1
$$

Inverse Relation:

$$
x=a^{y}
$$

There is no way to rearrange this algebraically, so we introduce a new representation:

Logarithmic Relation: $\quad y=\log _{a} x, a>0, a \neq 1$
"log to the base a of $\mathrm{x} "$

$$
y=\log _{a} x \quad \text { is equivalent to } x=a^{y}
$$

The two most important logarithmic functions have bases of '10' and 'e', so they get special notation:
${ }^{(1)} \log _{10} x=\log x \quad$ is the "common \log ".
(2) $\log _{e} x=\ln x \quad$ is the "natural \log ".
$e \doteq 2.718 \quad$ is the "natural number".

$$
2.718^{4.6052}
$$

Ex. 2 Write an equivalent exponential expression.

$$
\begin{array}{lll}
\log _{2} 32=5 & \left.\begin{array}{lll}
\log _{1}=0 & y=a^{x} \\
a=2 & a=10 & y=\log _{a} y \\
x=5 & a 2=2^{5} & x=0 \\
y=32 & y=1 & \\
y=10^{\circ} &
\end{array}\right] \\
& 1=1
\end{array}
$$

Ex. 3 Write an equivalent logarithmic expression.

$$
\text { (a) } 3^{4}=81
$$

$$
\log _{3} 81=4
$$

$$
\begin{aligned}
& \frac{1}{16}=4^{-2} \\
& \log _{4}\left(\frac{1}{16}\right)=-2
\end{aligned}
$$

Assigned Work:
p. 451 \# 4 to 9

Title : Nov 26-9:54 PM (Page 6 of 6)

