Use the following functions to answer questions $1-5$

$$
f(x)=x^{2}-1, g(x)=-2^{x}, h(x)=\sin x, w=\{(-2,1),(3,2),(4,7)\}, r(x)=\frac{x}{x+1}, \text { and } l(x)=2 \log x,
$$

1) Determine:
a) $f+w$

$$
f(-2)=(-2)^{2}-1 \quad f(3)=3^{2}-1 \quad f(4)=4^{2}-1
$$

$$
=3
$$

$$
=8
$$

$$
=15
$$

b) $f \cdot r$

$$
\begin{aligned}
& =\left(x^{2}-1\right) \cdot \frac{x}{x+1} \\
& =(x+1)(x-1) \cdot \frac{x}{x+1} \\
& =x(x-1), \quad x \neq-1
\end{aligned}
$$

Then add the y values.
$f+w=\{(-2,4),(3,10),(4,22)\}$
c) $\frac{h}{l}=\frac{\sin x}{2 \log x}$
d) $h \circ f$

$$
\begin{aligned}
& =h(f(x)) \\
& =\sin \left(x^{2}-1\right)
\end{aligned}
$$

e) $g \circ w$
substitute the y values in w, as x, into $g(x)$ to determine the y values of the composition.

$$
\begin{aligned}
& g(w(-2))=g(1) \Rightarrow-\left(2^{1}\right) \\
& g(w(3))=g(2) \Rightarrow-\left(2^{2}\right) \\
& g(w(4))=g(7) \Rightarrow-2^{7} \\
& g \circ w=\{(-2,-2),(3,-4),(4,-128)\}
\end{aligned}
$$

f) $w \circ r$
since the y values of r will become the x values of w, we need to find the values of x in r that will result in the correct y values.

$$
\begin{aligned}
& \frac{x}{x+1}=-2 \quad \frac{x}{x+1}=3 \\
& \frac{x}{x+1}+2=0 \quad \frac{x}{x+1}-3=0 \\
& \frac{x+2(x+1)}{x+1}=0 \quad \frac{x-3(x+1)}{x+1}=0 \\
& \begin{array}{rlrl}
x+2 x+2 & =0, x+-1 x-3 x-3 & =0, x+-1 \\
3 x & =-2 & -2 x & =3 \\
x & =\frac{-2}{3} & x & =\frac{-3}{2}
\end{array} \\
& \frac{x}{x+1}=4 \\
& \frac{x}{x+1}-4=0 \\
& \frac{x-4(x+1)}{x+1}=0 \\
& x-4 x-4=0, x \neq-1 \\
& -3 x=4 \\
& x=-\frac{4}{3} \\
& w \circ r=\left\{\left(\frac{-2}{3}, 1\right),\left(\frac{-3}{2}, 2\right),\left(\frac{-4}{3}, 7\right)\right\}
\end{aligned}
$$

2) Graph $h(x)$ and w. Use your graphs to graph $h(x)-w$.

3) Determine:
a) $D_{g \cdot l}$
b) $D_{l(r(x))}$

$$
D_{g \cdot l}=D_{g} \cap D_{e}
$$

$$
=\{x \mid x>0, x \in \mathbb{R}\}
$$

$\begin{aligned} & \text { rough work } \\ & D_{g}=\{x \mid x \in \mathbb{R}\}\end{aligned}$
$D_{e}=\{x \mid \times>0, x \in \mathbb{R}\}$

$$
\begin{gathered}
l(r(x))=2 \log \left(\frac{x}{x+1}\right) \\
\frac{x}{x+1}>0
\end{gathered}
$$

c) $R_{h(r(x))}$

$$
R_{h}=\{y \mid-1 \leq y \leq 1, y \in \mathbb{R}\}
$$

$$
\text { d) } R_{w(l(x))}
$$

$$
R_{r}=\left\{y \left\lvert\,, \begin{array}{l}
y \neq 1, y \in \mathbb{R}\}^{\prime} x \neq 1 \operatorname{in} h(x)
\end{array}\right.\right.
$$

$$
\therefore \sin 1 \neq h(1)
$$

$$
\text { bit } \sin 1=\sin (\pi-1)
$$

$$
\begin{gathered}
R_{\omega}=\{1,2,7\} \\
R_{\ell}=\{y \mid y \in R\} \\
\therefore \text { mo }\} \\
\text { restrictions in } \\
R_{w}
\end{gathered}
$$

$$
R_{w(l(x))}=\{1,2,7\}
$$

$$
R_{h(r(x))}=\{y \mid-1 \leq y \leq 1, y \in \mathfrak{R}\}
$$

4) How many zeros does $r(x) \cdot f(x)$ have?

$$
\begin{aligned}
& r(x) \text { has ore zero; } x=0 \\
& l(x) \text { has ore zero } x=1
\end{aligned}
$$

Thus the product will have two zeros: $x=0$ and $x=1$
5) Will the product of $f(x)$ and $h(x)$ be even, odd, or neither?
$f(x)$ is an even function and $h(x)$ is an odd function thus the product will be an odd function.
$f(x)$ is an even fact proof: $f(x)=x^{2}-1$

$$
\begin{aligned}
f(-x) & =(-x)^{2}-1 \\
& =x^{2}-1 \\
& =f(x)
\end{aligned}
$$

$h(x)$ is an odd fret. proof $h(x)=\sin x$

$$
\begin{aligned}
h(-x) & =\sin (-x) & & \text { if } x \in Q I \\
& =-\sin x & & -x \in Q \mathbb{I} \\
& =-h(x) & &
\end{aligned}
$$

The product of an ever and ar odd fuct is odd
\therefore The product of $f(x)$ and $h(x)$ is odd

$$
\begin{aligned}
& \text { Window } \\
& x_{\text {mu }}=-2 \pi \\
& x_{\text {max }}=2 \pi \\
& x_{\text {sci }}=2 \pi \\
& y_{\text {min }}=-4 \\
& y_{\text {max }}=4 \\
& y_{\text {sui }}=1
\end{aligned}
$$

6) Graphs of $y=f(x)$ and $y=g(x)$ are given below. Sketch $h(x)=\frac{f(x)}{g(x)}$ on the grid above.

7) Given $f=\{(-2,6),(-1,8),(0,5),(1,0),(2,-2)\}$ and $g(x)=x^{2}+1$,
a) graph $f-g$

In order to subtract these functions we need to find the points on $g(x)$ that match the x values of the points on $f(x)$

$$
\text { matithing pts: }(-2,5),(-1,2),(0,1) \quad(1,2),(2,5)
$$

b) state the domain of $f \cdot g: D_{f \cdot g}=\{-2,-1,0,1,2\}$

$$
\begin{gathered}
D_{f}=\{-2,-1,0,1, L\} D_{g}=\{x \mid x \in \pi\} \\
D_{f \cdot g}=D_{f} \cap D_{g}
\end{gathered}
$$

(The overlap of the domains)
c) determine $f \circ g(x)$ when $x=-1$

$$
\begin{aligned}
& f \circ g=f(g(x)) \\
& f(g(-1))=f(2) \\
&=-2
\end{aligned}
$$

d) determine $f(g(-1))$ same as c) ... I meant $g(f(-1))$

$$
\begin{aligned}
g(f(-1)) & =g(8) \\
& =65
\end{aligned}
$$

e) determine the domain of $f(g(x))$

$$
\begin{aligned}
& \text { viles of } x \text { that make } \\
& R_{g}=D_{f}: x^{2}+1=1, x^{2}+1=2
\end{aligned}
$$

The other $3 x$ values are not possible since $x^{2}+1 \geq 1$ for all x values.

$$
D_{f \circ g}=\{0, \pm 1\}
$$

8) If $f(x)=\frac{x}{x-1}$ and $g(x)=\frac{3}{x^{2}-1}$, find the value of x for which $(f+g)(x)=1$.

$$
\begin{aligned}
(f+g)(x) & =\frac{x}{x-1}+\frac{3}{x^{2}-1} \\
(f+g)(x) & =\frac{x}{x-1}+\frac{3}{(x+1)(x-1)} \\
(f+g)(x) & =\frac{x(x+1)+3}{(x+1)(x-1)} \\
1 & =\frac{x^{2}+x+3}{(x+1)(x-1)} \\
(x+1)(x-1) & =x^{2}+x+3 \quad x \neq \pm 1 \\
x^{2}-1 & =x^{2}+x+3 \\
0 & =x^{2}+x+3-x^{2}+1 \\
0 & =x+4 \\
-4 & =x
\end{aligned}
$$

9) Given $f(x)=x+3$, determine
a) $f^{-1}(x)$
b) $f \circ f^{-1}$
c) $f^{-1} \circ f$
a) $f^{-1}(x) \rightarrow$ inverse
b) $f \circ f^{-1}$
c) $f^{-1} \circ f$

$$
=f\left(f^{-1}(x)\right)=f^{-1}(f(x))
$$

$$
f^{-1}: \quad x=y+3
$$

$$
=f(x-3)=f^{-1}(x+3)
$$

$$
x-3=y \text {, a frat }
$$

$$
=x-3+3=x+3-3
$$

$$
\therefore x-3=f^{-1}(x)
$$

$$
=\searrow
$$

$$
=x
$$

as stated re HW of composition: $f \circ f^{-1}=f^{-1} \circ f=x$ as lour as $D_{F}=D_{f^{-1}}$
a) $f^{-1}(x)=x-3$
b) $f \circ f^{-1}=x$
c) $f^{-1} \circ f=x$
10) Use composition to verify that $f(x)=\frac{1}{x+1}$ and $g(x)=\frac{1-x}{x}$ are inverses of each other.

$$
\begin{aligned}
& \text { If } f \text { and } g \text { are inverses then } f \circ g=x \\
& f \circ g=f(g(x)) \\
&=\frac{1-x}{\frac{1-x}{x}+1} \\
&=1 \div\left(\frac{1-x}{x}+1\right) \\
&=1 \div \frac{1}{x} \\
&\left.=1 \cdot \frac{1-x+x}{1}\right) \\
&=x \quad \therefore \text { fund } q \text { ace inverse frets. }
\end{aligned}
$$

11) Given $f(x)=\sin x$ and $g(x)=2 x-\frac{\pi}{3}$, describe the graph of $f \circ g$ as a transformation of the graph of f.

$$
\begin{aligned}
& f \circ g=\sin \left(2 x-\frac{\pi}{3}\right) \\
&= \sin 2\left(x-\frac{\pi}{6}\right) \\
& f(x) \text { has been compressed horizontally by a factor of } 2 \\
& \text { translated to the right by } \frac{\pi}{6} \text { units }
\end{aligned}
$$

12) Given $q(x)=\frac{2 x-1}{x+5}$,
a) determine the intercepts), asymptotes), intervals of increase/decrease, and end behaviour of the function,

$$
\text { a) } \begin{aligned}
x \text { inti let } q(x) & =0 \\
\Rightarrow 2 x-1 & =0 \\
2 x & =1 \\
x & =\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { VA let denominator } & =0 \\
x+5 & =0 \\
x & =-5
\end{aligned}
$$

$$
2 x-1 \text { is incr. } \forall x \in \mathbb{R}
$$

$$
x+5 \text { is incr. } x \in \mathbb{R}
$$

$$
\therefore q(x) \text { is incr. } x x \in \mathbb{R}
$$

b) sketch the graph of the function,

c) define an equation $f(x)$ and an equation $g(x)$ such that $q(x)=\frac{f(x)}{g(x)}$

$$
\begin{aligned}
& f(x)=2 x-1 \\
& g(x)=x+5
\end{aligned}
$$

d) justify the properties you found in a) by studying the properties of the functions $f(x)$ and $g(x)$. $D_{q(x)}=D_{f} \cap D_{g}$ and $g(x) \neq 0$; number of zeros $=$ number of zeros of f, if in domain.
d) $D_{q(x)}$ should be $D_{f} \cap D_{g}$

$$
D_{f}=\{x \mid x \in \mathbb{R}\} \quad D_{j}=\left\{x Y_{x} \in \mathbb{R}\right\} \quad x+5 \neq 0
$$

intervals of incr. have already bee explained
\# of x-int: at most \# zeros of numerator $(f(x))$

$$
\begin{aligned}
& \text { at most } \text { zeros ot numerated }(t(x)) \\
& f(x) \text { has } 1 \text { zero, } x=0.5 \text { and } 0.5 \in D_{q(x)} \\
& \therefore q(x) \text { has one } x \text {-int. }
\end{aligned}
$$

both functions have neither odd nor even symmetry and so their quotient also has neither symmetry.
13) Given $f(x)=\sec x$, where,$-2 \pi \leq x \leq 2 \pi$ and $g(x)=\log x$ determine,
a) the domain of $\frac{f}{g}$

$$
\begin{aligned}
& \text { a) } \begin{aligned}
\frac{f}{g} & =\frac{\sec x}{\log x} \\
& =\frac{1}{(\log x)(\cos x)}
\end{aligned} \\
& D_{f}:\left\{x \left\lvert\, x \neq \frac{\pi}{2}+n \pi\right.,-2 \pi \leq x \leq 2 \pi\right\} \\
& D_{g}:\{x \mid x>0, x \in \mathbb{R}\} \quad g(1)=0 \\
& D_{\frac{f}{g}}=\left\{x \mid x \neq 1, x \neq \frac{\pi}{2}, \frac{3 \pi}{2}, 0<x \leq 2 \pi, x \in \mathbb{R}\right\}
\end{aligned}
$$

b) at most, the number of zeros for $\frac{f}{g}$, do you think this number is accurate?
b) \#zeros of $f(x)=$ none
w eros of $g(x)=1 \quad(x=1)$
at mart $\frac{f}{g}$ could have \#zeros of $f(x)$
\therefore a zeros of $\frac{f}{g}=$ none, accurate!
c) the domain of $\frac{g}{f}$

$$
\begin{aligned}
& \text {) } \frac{g}{f}=\frac{\log x}{\sec x} \Rightarrow \frac{\log x}{1 / \cos x} \\
& =(\log x) \cos x) \\
& \text { bit } \cos x \neq 0 \\
& D_{g}:\{x \mid x>0, x \in \mathbb{R}\} \\
& D_{f}:\left\{x \mid-2 \pi \leq x \leq 2 \pi, x \neq \frac{\pi}{2}+n \pi\right\} \\
& \frac{g}{f} \text { has VA at: } \\
& D_{\frac{g}{f}}=\left\{x \left\lvert\, x \neq \frac{\pi}{2}\right., \frac{3 \pi}{2}, 0<x \leq 2 \pi, x \in \mathfrak{R}\right\} \\
& \text { the VA of } g(x)[x=0] \text { and } \\
& \text { the zeros of } f(x) \text { [none] } \\
& \frac{g}{f} \text { has a hole at the VA of } f(x)[x=\pi / 2,3 \pi / 2]
\end{aligned}
$$

d) at most, the number of zeros for $\frac{g}{f}$, do you think this number is accurate?
\# zeros of $g(x)=1 \quad(x=1)$
t zeros of $f(x)=$ nome
at most $\frac{g}{f}$ could have t zeros of $g(x)$
\therefore at most, zeros of $\frac{g}{f}=1$
zero of $g(x) \in D_{\frac{g}{4}} \therefore$ This is accurate
note: from the graph is looks like the function has zeros at the VA of $f(x)$, but they are actually holes
14) Given $f(x)=3^{x}$ and $g(x)=\tan x$, where $-2 \pi \leq x \leq 2 \pi$ determine,
a) the domain of $f \cdot g$

$$
\begin{aligned}
& D_{f . g}=D_{f} \cap D_{g} \\
& \text { "common values" } \\
& D_{f}:\{x \mid x \in \mathbb{R}\} \\
& D_{g}:\left\{x \mid-2 \pi \leqslant x \leqslant 2 \pi, x \neq \frac{\pi}{2}+n \pi, x \in i R\right\} \\
& D_{f: g}=\left\{x \left\lvert\, x \neq \frac{\pi}{2}+n \pi\right.,-2 \pi \leq x \leq 2 \pi, n \in \mathrm{Z}, x \in \Re\right\}
\end{aligned}
$$

b) the range of $f \cdot g$

$$
\begin{array}{ll}
R_{f \cdot g} \text { at most } R_{f} \cdot R_{g} & \left.R_{f}:\{y\} y>0, y \in \mathbb{R}\right\} \\
\left.R_{f \cdot g}:\{y\} y \in \mathbb{R}\right\} & \left.R_{g}:\{y\rangle y \in \mathbb{R}\right\}
\end{array}
$$

Any real number multiplied by a number larger than zero will still be a real number.
c) at most, the number of zeros for $f \cdot g$, do you think this number is accurate?

$$
\begin{aligned}
& \# \text { zeros of } 3^{x} \text { is } 0 \\
& \text { a zeros of tan } x \text { (within. }-2 \pi \leq x \leq 2 \bar{\pi}) \text { is } 5 \quad(x= \pm 2 \overline{4}, \pm \pi, 0)
\end{aligned}
$$

$$
\text { The of zeros of fig } \begin{aligned}
& =0+5 \text { atmort. } \\
& =5
\end{aligned}
$$

Since the zeros are within $D_{f} \cdot g$ this number is accurate
At most, the number of zeros of $f \cdot g=$ number of zeros of $f+$ number of zeros of g. (Assuming there are no restrictions on the domain or common zeros, ie.: double roots). Thus, at most, the number of zeros of $f \cdot g=5$.
All the zeros are within the domain and there are no common (double) zeros, thus this number is accurate.
15) The plucked string of a guitar and the sound as it fades away can be represented by a damped sine wave that has an equation of the form $y=2^{-t} \sin \pi t$. Sketch a graph of the functions for $0 \leq t \leq 2 \pi$.
2^{-t} : exponential decreasing $\left(2^{-1}\right)^{t}=\left(\frac{1}{2}\right)^{t}$
\sin 万̈t: trigonometric, amplitude of 1

$$
\text { period }=\frac{2 \pi}{\pi}
$$

\[

\]

with graphing programme:

16) Let $S(t)$ represent the number of single adults in Canada in year t and $M(t)$ represent the number of married adults in Canada in year t. Let $E(t)$ represent the average amount spent on entertainment by a single adult and let $\mathrm{N}(\mathrm{t})$ represent the average amount spent on entertainment by a married adult. Using a combination of the functions defined above come up with representations for the following functions:
a) $\mathrm{A}(\mathrm{t})$, the number of Canadian adults in Canada in year t .

$$
A(t)=S(t)+M(t) \text {, assuming that all adults are either single or married. }
$$

b) $\mathrm{B}(\mathrm{t})$, the amount of money spent on entertainment by Canadian single adults in year t .

$$
\begin{aligned}
& B(t)=(\text { amount spent per single adult }) *(\text { number of single adults }) \\
& B(t)=E(t) * S(t)
\end{aligned}
$$

c) $\mathrm{C}(\mathrm{t})$, the amount of money spent on entertainment by Canadian adults in year t .

$$
\begin{aligned}
& C(t)=\text { amount spent by single adults }+ \text { amount spent by married adults. } \\
& C(t)=B(t)+M(t) * N(t) \\
& C(t)=E(t) * S(t)+M(t) * N(t)
\end{aligned}
$$

17) The change function is defined as $d(x)=f(x)-f(x-1)$.
change fact. $d(x)=f(x)-f(x-1)$
$f(x) \rightarrow y$ value
$f(x-1) \rightarrow y$ value for a point to the left of $f(x)$
What is the meaning, in terms of f, if
a) $d(x)>0$
$f(x)-f(x-1)>0$
$f(x)>f(x-1)$
$\therefore f(x)$ is increasing
y values are getting bret.
f is increasing
b) $d(x)<0$

$$
\begin{aligned}
f(x)-f(x-1) & <0 \\
f(x) & <f(x-1)
\end{aligned}
$$

$\therefore f(x)$ is decreasing
y vales are getting
smaller.
f is decreasing
c) $d(x)=0$

$$
\begin{aligned}
f(x)-f(x-1) & =0 \\
f(x) & =f(x-1)
\end{aligned}
$$

18) Each of the following graphs is a combination of two of the functions: $f(x)=x, g(x)=2^{x}$, $h(x)=x^{2}, j(x)=\cos x$ and one of the operations: addition, subtraction, multiplication, division, for each of the given graphs. State the equation and explain how you know using key features of the functions.
Equation and Explanation
19) Suppose that some oil has been spilled in water and has formed a circular oil slick. One minute after the spill the radius of the slick is 2 metres and 3 minutes after the spill the radius is 6 metres.
a) Express the radius, r, of the spill as a function of time, t, if the radius is increasing at a constant rate.

$$
\begin{array}{ll}
t=1 \mathrm{~min} & r=2 \mathrm{~m} \\
t=3 \mathrm{~min} & r=6 \mathrm{~m}
\end{array}
$$

$$
\text { rate is constant } \therefore \text { avg rate }=\frac{6-2}{3-1}
$$

$$
\begin{array}{ll}
r=2 t+b, & \text { Let } b \text { rep the } y \text {-int. } \\
6=2(3)+b & \text { find } b \text { by subing } \\
6=6+b & \text { in pt. } \\
0=b &
\end{array}
$$

$$
r(t)=2 t \text { is the eq'n of radius as a fact of time }
$$

b) Was the radius 0 at time $t=0$?

$$
r(0)=0
$$

c) Express the circumference, C, of the spill as a function of time.

$$
\begin{aligned}
C(r) & =2 \pi r \\
C(r(t)) & =2 \pi(2 t) \\
& =4 \pi t
\end{aligned}
$$

d) Express the area, A, of the spill as a function of time.

$$
\begin{aligned}
A(r) & =\pi r^{2} \\
A(r(t)) & =\pi(2 t)^{2} \\
& =\pi\left(4 t^{2}\right) \\
& =4 \pi t^{2}
\end{aligned}
$$

e) Determine the change function for each of the radius, the circumference and the area. What does it tell us about the spill?

$$
\begin{aligned}
& r(t)-r(t-1)=2 r-2(r-1) \\
&=2 r-2 r+2 \\
&=2>0 \\
& \therefore \text { radius is increasing (at a constant rate) } \\
& C(t)-C(t-1)=4 \pi t-4 \pi(t-1) \\
&=4 \pi t-4 \pi t+4 \pi \\
&=4 \pi>0 \\
& \therefore \text { Circumference is increasing and }>2 \text { (at a constant rate) aster than radius } \\
& A(t)-A(t-1)=4 \pi t^{2}-4 \pi(t-1)^{2} \\
&=4 \pi t^{2}-4 \pi\left(t^{2}-2 t+1\right) \\
&=4 \pi t^{2}-4 \pi t^{2}+8 \pi t-4 \pi \\
&=8 \pi t-4 \pi \\
&=4 \pi(2 t-1)
\end{aligned}
$$

20) Find the functions f and g such that $h(t)=f(g(x))$
a) $h(x)=(2 x+1)^{9}$
b) $h(x)=\frac{1}{x^{2}-7}$
c) $h(x)=\sin (3 x+\pi)$
a) $h(x)=(2 x+1)^{9}$
b) $h(x)=\frac{1}{x^{2}-7}$
c) $h(x)=\sin (3 x+\pi)$
$g(x)=3 x+\pi$
$g(x)=2 x+1$
$g(x)=x^{2}-7$
$f(x)=\sin x$
d) $h(x)=4 x^{2}+12 x+4$, given $f(x)=x^{2}-5$ and $g(x)$ is a linear function

$$
\begin{aligned}
& h(x)=4 x^{2}+12 x+4 \\
& h(x)=(2 x)^{2}+6(2 x)+4 \\
& \text { Let } 2 x=a
\end{aligned}
$$

$$
h(a)=a^{2}+6 a+4 \rightarrow\left(a^{2}+6 a+9-9\right)+4
$$

$$
f(a)=a^{2}-5
$$

$$
=\left(a^{2}+6 a+9\right)-9+4
$$

$$
=(a+3)^{2}-5
$$

$$
g(a)=a+3
$$

$$
g(x)=2 x+3
$$

d) was challenging!
21) Complete the following table (determine the equation of the function or draw the graph)

a) Determine the domain of: In general, the domain is given by the overlapping x values, quotient functions have extra restrictions since the denominator can not equal zero.

i) $(f+k)(x)$	ii) $(p-q)(x)$	iii) $(r s)(x)$
$D_{f}=\{x \mid x \in \mathfrak{R}\}$	$D_{p}=\{x \mid x \neq 0, x \in \mathfrak{R}\}$	$D_{r}=\{1,2,3\}$
$D_{k}=\{x \mid x>0, x \in \mathfrak{R}\}$	$D_{q}=\{x \mid x \neq-2, x \in \mathfrak{R}\}$	$D_{s}=\{0,1,2\}$
$D_{f+k}=\{x \mid x>0, x \in \mathfrak{R}\}$	$D_{p-q}=\{x \mid x \neq 0,-2, x \in \mathfrak{R}\}$	$D_{r s}=\{1,2\}$
v) $(m \div g)(x)$	v) (np:f)(x)	
$D_{m}=\{x \mid x \in \mathfrak{R}\}$	$D_{n}=\{x \mid x \in \mathfrak{R}\}$	
$D_{g}=\{x \mid x \in \mathfrak{R}\}$	$D_{p}=\{x \mid x \neq 0, x \in \mathfrak{R}\}$	
zeros of $g:-2,0,2$	$D_{q}=\{x \mid x \in \mathfrak{R}\}$	
$D_{m \div g}=\{x \mid x \neq-2,0,2, x \in \mathfrak{R}\}$	zeros of f:-2,2	
	$D_{p-q}=\{x \mid x \neq 0, \pm 2, x \in \mathfrak{R}\}$	

b) Determine the range of:

i) $(r+s)(x)$	ii) $(f-g)(x)$
$r+s=\{(1,6),(2,3)\}$	$R_{f}=\{y \mid y \geq-4, y \in \mathfrak{R}\}$
$R_{r+s}=\{6,3\}$	$R_{q}=\{y \mid y \in \mathfrak{R}\}$
	The difference of a quadratic and a cubic is a cubic : $R_{f-g}=\{y \mid y \in \mathfrak{R}\}$
iii) $(h \div j)(x)$	iv) (fn)(x)
$R_{h}=\{y \mid y>0, y \in \mathfrak{R}\}$	$R_{f}=\{y \mid y \geq-4, y \in \mathfrak{R}\}$
$R_{j}=\{y \mid y>0, y \in \mathfrak{R}\}$	$R_{n}=\{y\| \| y \mid \leq-1, y \in \mathfrak{R}\}$
A positive divided by a positive results in a positive	numbers ≥-4 will be multiplied by $1,-1$ and any number in between resulting in positive and negative \#
$R_{h \div j}=\{y \mid y>0, y \in \mathfrak{R}\}$	$R_{f n}=\{y \mid y \in \Re\}$

c) Algebraically, determine whether the following are even, odd or neither

i) $(f p)(x)$ $\begin{aligned} &(f p)(x)=\left(x^{2}-4\right)\left(\frac{1}{x^{2}}\right) \\ &(f p)(-x)=\left((-x)^{2}-4\right)\left(\frac{1}{(-x)^{2}}\right) \\ &(f p)(-x)=\left(x^{2}-4\right)\left(\frac{1}{x^{2}}\right) \\ &(f p)(-x)=(f p)(x) \\ & \therefore \quad \text { even } \end{aligned}$ This supports our conclusions: the product of two even functions is even.	This supports our conclusions: the product of a "neither" with an even function is neither.
iii) $(m m)(x)$ $\begin{aligned} & (m m)(x)=\sin \left(\frac{1}{2} x\right) \cdot \sin \left(\frac{1}{2} x\right) \\ & \quad(m m)(-x)=\sin \left(-\frac{1}{2} x\right) \cdot \sin \left(-\frac{1}{2} x\right) \\ & \quad(m m)(-x)=-\sin \left(\frac{1}{2} x\right) \cdot-\sin \left(\frac{1}{2} x\right) \\ & \quad(m m)(-x)=\sin \left(\frac{1}{2} x\right) \cdot \sin \left(\frac{1}{2} x\right) \\ & \quad(m m)(-x)=(m m)(x) \\ & \therefore \quad \text { even } \end{aligned}$ This supports our conclusions: the product of two odd functions is even.	iv) $(m \div p)(x)$ $\begin{aligned} & (m \div p)(x)=\sin \left(\frac{1}{2} x\right) \div \frac{1}{x^{2}} \\ & \quad(m \div p)(-x)=\sin \left(-\frac{1}{2} x\right) \div \frac{1}{(-x)^{2}} \\ & \quad(m \div p)(-x)=-\sin \left(\frac{1}{2} x\right) \div \frac{1}{x^{2}} \\ & \quad(m \div p)(-x)=-(m \div p)(x) \\ & \quad \therefore \quad \text { odd } \end{aligned}$ This supports our conclusions: the quotient of one odd function with one even function is odd.

d) Determine all the zeros for the function

i) $(f g)(x)$	ii) $(m \div g)(x)$
zeros of $f:-2,2$	
zeros of $g:-2,0,2$	zeros of $m: 0, \pm \pi, \pm 2 \pi, \ldots$ in general: $\pm n \pi$
zeros of $g:-2,0,2$	
\therefore zeros of $f g:-2(D R), 0,2(D R)$	\therefore zeros of $m \div g: \pm \pi, \pm 2 \pi, \ldots$ in general $\pm n \pi$
	NOT - $2($ VA $), 2($ VA $), 0$ (hole)
iii) $(l f)(x)$	iv) $(h \div q)(x)$
zeros of $I: 1, x>0$	
zeros of $f:-2,2$	
	zeros of $h:$ none
zeros of $q:$ none	
\therefore zeros of $l g: 1,2$	\therefore zeros of $m \div g:$ none

e) Determine the average rate of change in the interval [1,3] for the functions

$\text { i) } \begin{aligned} & f(x) \\ & \text { avg } \operatorname{RoC}=\frac{f(3)-f(1)}{3-1} \\ &=\frac{5-(-3)}{3-1} \\ &=4 \end{aligned}$	$\text { ii) } \begin{aligned} & g(x) \\ & \operatorname{avg} \quad \operatorname{RoC}=\frac{g(3)-g(1)}{3-1} \\ &=\frac{15-(-3)}{3-1} \\ &=9 \end{aligned}$
iii) $m(x)$ $\begin{aligned} \text { avg } \quad \text { RoC } & =\frac{m(3)-m(1)}{3-1} \\ & \doteq \frac{0.9975-0.4794}{3-1} \\ & \doteq 0.25905 \end{aligned}$	$\text { iv) } \begin{aligned} & p(x) \\ & \operatorname{avg} \operatorname{RoC}=\frac{p(3)-p(1)}{3-1} \\ &=\frac{1 / 9-1}{3-1} \\ &=\frac{-4}{9} \end{aligned}$

f) Determine the average rate of change in the interval [1,3] for the functions

i) $(f+g)(x)$ $\begin{aligned} \operatorname{avg} \quad R o C_{f+g} & =a v g \quad \operatorname{RoC}_{f}+\operatorname{avg} \quad \operatorname{RoC}_{f} \\ & =4+9 \\ & =13 \end{aligned}$	ii) $(g m)(x)$ This is NOT equal to the product of the two avg RoC! $\begin{aligned} (g m)(x)= & \left(x^{3}-4 x\right) \cdot\left(\sin \frac{1}{2} x\right) \\ \operatorname{avg} \quad R o C & =\frac{(g m)(3)-(g m)(1)}{3-1} \\ & =\frac{g(3) \cdot m(3)-g(1) \cdot m(1)}{3-1} \\ & \doteq \frac{14.9625-(-1.4382)}{3-1} \\ & \doteq 8.2004 \end{aligned}$
iii) $(m-p)(x)$ $\begin{aligned} \text { avg } \quad R o C_{m-p} & =a v g \quad R o C_{m}-\operatorname{avg} \quad R o C_{p} \\ & \doteq 0.25905-\frac{-4}{9} \\ & \doteq 0.7035 \end{aligned}$	iv) $(f \div p)(x)$ This is NOT equal to the quotient of the two avg RoC! $\begin{aligned} (f \div p)(x)= & \left(x^{2}-4\right) \cdot\left(x^{-2}\right) \\ \text { avg RoC } & =\frac{(f \div p)(3)-(f \div p)(1)}{3-1} \\ & =\frac{f(3) \div p(3)-f(1) \div p(1)}{3-1} \\ & =\frac{45-(-3)}{3-1} \\ & =24 \end{aligned}$

