The Dot Product of Geometric Vectors

The dot product is one type of vector multiplication, but the product itself (i.e., the result) is a scalar.

$\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$ for $0^{\circ} \leq \theta \leq 180^{\circ}$
$\frac{\vec{a}}{\vec{a}}$

$$
\begin{aligned}
+0^{\circ} \leq \theta & <90^{\circ} \\
\cos \theta & >0
\end{aligned}
$$

$$
\therefore \vec{a} \cdot \vec{b}>0
$$

$$
\begin{aligned}
& \theta=90^{\circ} \quad \cos 90^{\circ}=0 \\
& \therefore \vec{a} \cdot \vec{b}=0
\end{aligned}
$$

Can be used to test for right angles.

$$
\begin{gathered}
90^{\circ}<\theta \leq 180^{\circ} \\
\quad \cos \theta<0 \\
\therefore \vec{a} \cdot \vec{b}<0
\end{gathered}
$$

Properties of the Dot Product:

(1) Commutative

$$
\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}
$$

(2) Distributive:

(3) Magnitudes:

$$
\begin{aligned}
\vec{a} \cdot \vec{a}=|\vec{a}|^{2} & \begin{array}{ll}
a \cdot a \\
& =|\vec{a}||\vec{a}| \cos \vec{b}^{1} \\
& =|\vec{a}|^{2}
\end{array}
\end{aligned}
$$

(4) Associative with scalar:
$(k \vec{a}) \cdot \vec{b}=\vec{a} \cdot(k \vec{b})=k(\vec{a} \cdot \vec{b})$

Ex. 2 Show that

$$
\begin{aligned}
& (\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=|\vec{a}|^{2}-|\vec{b}|^{2} \\
C S= & (\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b}) \\
= & \vec{a} \cdot(\vec{a}-\vec{b})+\vec{b} \cdot(\vec{a}-\vec{b}) \\
= & \vec{a} \cdot \vec{a}-\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}-\vec{b} \cdot \vec{b} \\
= & |\vec{a}|^{2} \underbrace{-\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{b}}_{0}-|\vec{b}|^{2} \\
= & |\vec{a}|^{2}-|\vec{b}|^{2} \quad L S=R S V
\end{aligned}
$$

Ex. 1 find the angle between vectors \mathbf{u} and \mathbf{v} given:
(1) $|\vec{u}|=3|\vec{v}| \quad|\vec{u}| \neq 0 \quad|\vec{v}| \neq 0$
(2) $3 \vec{u}+\vec{v}$ and $\vec{u}-8 \vec{v} \quad$ are perpendicular.

$$
\begin{aligned}
&(3 \vec{u}+\vec{v}) \cdot(\vec{u}-8 \vec{v})=0 \quad \text { Foll dot product is } \\
& 3 \vec{u} \cdot \vec{u}-24 \vec{u} \cdot \vec{v}+\underbrace{\vec{v} \cdot \vec{u}}_{\vec{v} \cdot \vec{v}}-8 \vec{v} \cdot \vec{v}=0 \\
& 3|\vec{u}|^{2}-23 \vec{u} \cdot \vec{v}-8|\vec{v}|^{2}=0 \\
& 3|\vec{u}|^{2}-23|\vec{u}||\vec{v}| \cos \theta-8|\vec{v}|^{2}=0 \\
& 3(3|\vec{v}|)^{2}-23(3|\vec{v}|)|\vec{v}| \cos \theta-8|\vec{v}|^{2}=0 \quad \quad\left[\frac{1}{\mid}|\vec{v}|^{2}\right] \\
& 3(9)-23(3) \cos \theta-8=0 \\
& 19-69 \cos \theta=0 \\
& 19=69 \cos \theta \\
& \cos \theta=\frac{19}{69} \\
& \theta=74.0^{\circ}
\end{aligned}
$$

\therefore the angle between \vec{u} and \vec{v} is 74.0°.

Assigned Work

p. 377 \#2, 5, 6abe, 7acd, 9, 11, 12

