The Dot Product of Algebraic Vectors

$$
\begin{aligned}
& \text { Given } \begin{aligned}
\vec{a} & =\left(a_{x}, a_{y}\right) \quad \vec{b} \\
= & =\left(b_{x}, b_{y}\right) \\
& =b_{x} \vec{i}+a_{y} \vec{j}+b_{y} \vec{j}
\end{aligned} \\
& \begin{aligned}
\vec{a} \cdot \vec{b}=\left(a_{x} \vec{i}+a_{y} \vec{j}\right) \cdot\left(b_{x} \vec{i}+b_{y} \vec{j}\right) \quad \text { FOL }
\end{aligned} \\
& =a_{x} b_{x} \underbrace{\vec{i} \cdot \vec{i}}_{1}+a_{x} b_{y} \underbrace{\vec{i} \cdot \vec{j}+a_{y} b_{x} \underbrace{\vec{j} \cdot \vec{i}}_{0}+a_{y} b_{y} \underbrace{\vec{j} \cdot \vec{j}}_{0}}_{0} \begin{aligned}
& \vec{i} \cdot \vec{i}=|\vec{i}|^{2} \\
&=a_{x} b_{x}+a_{y} b_{y} \quad=1 \\
& \vec{i} \cdot \vec{j}=0 \\
& \vec{i} \perp \vec{j}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \ln \mathrm{R}^{2}: \vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y} \\
& \ln \mathrm{R}^{3}: \vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
\end{aligned}
$$

Ex. 1 Given $\vec{a}=(-\underset{x}{-1}, \underset{y}{4}, \underset{z}{6})$

$$
\vec{b}=\left(2,{ }_{x},-,-3\right)
$$

Determine $\vec{a} \cdot{ }^{x} \cdot \vec{b}^{y}$

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =(-1)(2)+(4)(1)+(6)(-3) \\
& =-2+4+(-18) \\
& =-16
\end{aligned}
$$

Title : May 15-12:43 PM (Page 3 of 5)

Ex. 3 For what values) of $k \quad$ are the vectors perpendicular? $\vec{u}=(-1,3,-4)$

$$
\vec{v}=(3, k,-2)
$$

$$
\begin{aligned}
& 1: \vec{u} \cdot \vec{v}=0 \\
&(-1)(3)+(3)(k)+(-4)(-2)=0 \\
&-3+3 k+8=0 \\
& 3 k=-5 \\
& k=\frac{-5}{3}
\end{aligned}
$$

Assigned Work:

p. 385 \# 2, 4, 6bd, 7b, 9b, 10a, 11, 12, 14

Read Example 5 on page 384

