Scalar \& Vector Projections

One way to view the dot product is through vector components of one vector onto another. The order of the dot product does not matter.

The relative directions do matter, however, and will cause the dot product to be positive or negative.

The scalar projection is a measure of how one vector lies along a second vector.
(a)

(b)

(a) scalar projection of \mathbf{a} on $\mathbf{b}: \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}=|\vec{a}| \cos \theta$
(b) scalar projection of \mathbf{b} on \mathbf{a} : $\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|}=|\vec{b}| \cos \theta$

The vector projection is similar to the scalar projection, but also includes the direction of the second vector.

To include the direction of a vector, but ignore the magnitude, we use the unit vector.

$\underset{\text { vector }}{\text { projection }}=$| scalar |
| :---: |
| projection |$\times \quad$| unit |
| :---: |
| vector |

vector projection of \vec{a} on \vec{b} :

in

Projections Using Basis Unit Vectors

Given a point in $\mathrm{R}^{3}, P(a, b, c)$, the vector is

$$
\overrightarrow{O P}=(a, b, c)
$$

We can consider the scalar and vector projections onto the $x-, y-$, and z-axes, which are trivial:
scalar projection
x:
a vector projection
$a \vec{i}$
$b \vec{j}$
z:
y :
b
c

From the previous definition of scalar projection:

$$
\frac{\overrightarrow{O P} \cdot \vec{i}}{|\vec{i}|}=|\overrightarrow{O P}| \cos \alpha=a^{\quad \vec{a} \cdot \vec{b}=|\vec{a}||亡 b| \cos \theta}
$$

Similarly,

$$
\therefore \cos \alpha=\frac{a}{\uparrow} \begin{aligned}
& \text { "alpha" }
\end{aligned}
$$

$$
\cos \alpha=\frac{a}{|\overrightarrow{O P}|} \quad \cos \beta=\frac{b}{|\overrightarrow{O P}|} \quad \cos \gamma=\frac{c}{|\overrightarrow{O P}|}
$$

These are the \quad direction cosines for $\overrightarrow{O P}=(a, b, c)$ wheref , and are the direction angles $\overrightarrow{O P}$ makes with the positive $x-, y-$, and z-axes.

$$
\vec{q}=|\vec{q}| \quad[\text { direction }]
$$

Title : May 8-11:39 AM (Page 7 of 9)

$$
\begin{aligned}
& \text { Ex. } 1 \text { For vectors } \mathbf{a} \quad=(-2,3,4) \text { and } \mathbf{b} \quad=(8,7,-6) \text {, find: } \\
& \text { (a) the scalar projection of } \mathbf{a} \text { onto } \mathbf{b} \text {. } \\
& \text { (b) the scalar projection of } \mathbf{b} \text { onto } \mathbf{a} \text {. } \\
& \text { (c) the vector projection of } \mathbf{a} \text { onto } \mathbf{b} \text {. } \\
& \text { (d) the direction angles for a } \\
& \text { (a) } \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \\
& =\frac{-19}{\sqrt{149}} \times \frac{\sqrt{149}}{\sqrt{149}} \\
& |\vec{a}|=\sqrt{29} \\
& =\frac{-19 \sqrt{149}}{149} \\
& \text { (b) } \frac{\vec{b} \cdot \stackrel{\rightharpoonup}{a}}{|\vec{a}|}=\frac{-19}{\sqrt{29}} \times \frac{\sqrt{29}}{\sqrt{29}} \\
& =\frac{-19 \sqrt{29}}{29} \\
& \text { (c) vat proc } \vec{a} \text { an } \vec{b}=(\text { scalar proc }) \text { (untvector) } \\
& \vec{a} \downarrow \vec{b}=\left(\frac{-19 \sqrt{147}}{149}\right)\left(\frac{(8,7,-6)}{\sqrt{149}}\right) \\
& =\frac{-19}{149}(8,7,-6) \\
& =\left(\frac{-152}{149}, \frac{-133}{149}, \frac{114}{149}\right) \\
& \text { (d) } \vec{a}=(-2,3,4) \\
& \cos \alpha=\frac{x_{\vec{a}}}{|\vec{a}|} \quad \cos \beta=\frac{y_{\vec{a}}}{|\vec{a}|} \quad \cos \gamma=\frac{4}{\sqrt{29}} \\
& \cos \alpha=\frac{-2}{\sqrt{29}} \quad=\frac{3}{\sqrt{29}} \quad \gamma \doteq 42^{\circ} \\
& \alpha=112^{\circ} \quad \beta=56^{\circ}
\end{aligned}
$$

Title : May 17-8:35 AM (Page 8 of 9)

Assigned Work

$$
\text { p. } 398 \text { \# 1, 6, 7b, 8, 11, 13, 15, } 17
$$

