Unit 7: Lines \& Planes

Equations of Lines in R^{2}
Recall: equation of a straight line

$$
y=a x+b
$$

slope, rise/run, rate of change

starting point (y-intercept)

see Geogebra demo

May 14-6:54 PM

Vector Equation of a Straight Line:

$\vec{r}=\vec{r}_{0}+t \vec{m}$			
vector position of starting point	scale factor $t \in \mathbf{R}$		direction vector
:---			
(along slope of line)			

By varying the value of t, any point along the line can be obtained through vector addition.

Ex. 1 A line passes through the point $(5,-2)$ with the direction vector $(4,6)$.
(a) State the vector equation of the line.
$P(5,-2)$
(b) Find the point that corresponds with $t=3$.
(c) Does the point $(1,-6)$ lie on this line?
$\overrightarrow{O P}=(5,-2)$
(d) Write the equation in the form $y=m x+b$.

$$
\text { (a) } \begin{aligned}
\vec{r} & =\vec{r}_{0}+t \vec{m} \\
\vec{r} & =(5,-2)+t(4,6), t \in \mathbb{R}
\end{aligned}
$$

(b) $\vec{r}=(5,-2)+(3)(4,6)$

$$
=(5,-2)+(12,18)
$$

$$
=(17,16)
$$

$$
\therefore \text { point is } Q(17,16)
$$

Apr 26-4:54 PM

Ex. 1 A line passes through the point $(5,-2)$ with the direction vector $(4,6)$.
(a) State the vector equation of the line.
(b) Find the point that corresponds with $t=3$.
(c) Does the point $(1,-6)$ lie on this line?
(d) Write the equation in the form $y=m x+b$.
from $(\mathrm{a}): \vec{r}=(5,-2)+t(4,6)$
(c) does vector $\vec{r}=(1,-6)$ touch line?

$$
\begin{gathered}
(1,-6)=(5,-2)+t(4,6) \\
x y y \\
x=5+4 t \text { (1) }
\end{gathered}
$$

$$
-4=4 t \quad \text { check } t=-1 \text { or solve for } t
$$

$$
t=-1
$$

$$
C S=-6 \quad R S=-2+6(-1) \quad-4=6 t
$$

$$
\begin{array}{rlrl}
\angle S=-6 & R S & =-2+6(-1) & -4
\end{array}=\begin{array}{rlrl}
& =6 t \\
& =-2-6 & t & =\frac{-4}{6} \\
& =-8 & t & =\frac{-2}{3}
\end{array},
$$

$$
\therefore(1,-6) \text { does NOT lie on the line. }
$$

Apr 26-4:54 PM

$$
\begin{array}{rlr}
\vec{r}=(5,-2)+t(4,6) & \vec{m} & =(4,6) \\
\text { (d) } y & =m x+b & \\
y & =\frac{3}{2} x+b & \\
\text { sub } P_{0}(5,-2) & m & =\frac{\Delta y}{\Delta x} \\
-2 & =\frac{3}{2}(5)+b & \\
-\frac{4}{2}-\frac{15}{2} & =\frac{15}{2}+b \\
b & =\frac{-19}{2} & \\
y & =\frac{3}{2} \\
y & &
\end{array}
$$

May 14-10:35 AM

Parametric Equation of a Straight Line:

The parametric form of the equation comes directly from the vector equation. It considers the $x-$, and y components separately, which can be more convenient.

$$
\begin{aligned}
& \vec{r}=\vec{r}_{0}+t \vec{m} \\
& (x, y)=\left(x_{0}, y_{0}\right)+t(a, b) \\
& 2 \text { parametric } \\
& \Rightarrow x=x_{0}+a t \\
& \Rightarrow y=y_{0}+b t \\
& \begin{array}{c}
\text { ens in } \\
R^{2}
\end{array}
\end{aligned}
$$

Ex. 2
(a) Find the vector and parametric equations of the line passing through $\mathrm{M}(5,7)$ and $\mathrm{N}(8,2)$.
(b) Find two vector equations perpendicular to your answer in part (a).

May 16-12:47 PM

Ex. 2
(a) Find the vector and parametric equations of the line passing through $M(5,7)$ and $N(8,2)$.
(b) Find two vector equations perpendicular to your answer in part (a).
in general

$$
\overrightarrow{r_{\perp}}=\underbrace{(a, b)}+t \underbrace{(5,3)}_{\text {direct }}
$$

any start direction vector

$$
\begin{aligned}
& \text { direction vector } \\
& \text { is valet } 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { from (a): } \vec{r}=(5,7)+t(3,-5) \quad \underbrace{t}_{\Delta x \text { slope }} \\
& \vec{r}_{\stackrel{\rightharpoonup}{1}^{\prime}}=(5,7)+t(5,3) \\
& m=\frac{\Delta y}{\Delta x} \\
& \text { OR } \\
& \vec{r}_{\perp}=(8,2)+t(5,3) \\
& \Rightarrow M_{\perp}=\frac{3}{5} \frac{\Delta_{y}}{\Delta x} \\
& \Rightarrow \vec{m}_{\perp}=(5,3) \\
& \text { or } \\
& =\frac{-5}{3}
\end{aligned}
$$

Assigned Work:

$$
\text { p. } 433 \# 1,2,3,4,5,6,7,9 b, 10
$$

Apr 26-4:51 PM

