Unit 7: Lines & Planes

Equations of Lines in R²

Recall: equation of a straight line

slope, rise/run, rate of change

starting point (y-intercept)

see Geogebra demo

May 14-6:54 PM

Vector Equation of a Straight Line:

vector position of starting point

scale factor $t \in \mathbf{R}$

direction vector (along slope of line)

By varying the value of *t*, any point along the line can be obtained through vector addition.

May 14-6:58 PM

Ex.1 A line passes through the point (5,-2) with the direction vector (4,6).

(a) State the vector equation of the line.

P(5,-2)

(b) Find the point that corresponds with t = 3.

OP = (5,-2)

(c) Does the point (1,-6) lie on this line?

= =

(d) Write the equation in the form y = mx + b.

(b)
$$\vec{r} = (5,-2) + (3)(4,6)$$

= $(5,-2) + (12,18)$
= $(17,16)$
: point is $Q(17,16)$

Apr 26-4:54 PM

- (a) State the vector equation of the line.
- (b) Find the point that corresponds with t = 3.
- (c) Does the point (1,-6) lie on this line?
- (d) Write the equation in the form y = mx + b.

from (a):
$$\vec{r} = (5, -2) + t(4, 6)$$

(c) does vector
$$\vec{r} = (1,-6)$$
 to whe line?
 $(1,-6) = (5,-2) + t (4,6)$
 $x y x y x y$
 $1 = 5 + 4t 0 -6 = -2 + 6t 0$
 $-4 = 4t$ check $t = -1$ ox solve for t
 $t = -1$
 $t = -1$
 $t = -1$
 $t = -2 - 6$ $t = -\frac{7}{6}$
 $t = -\frac{7}{6}$
 $t = -\frac{7}{6}$
 $t = -\frac{7}{3}$
inconsistency
 $t = -\frac{7}{3}$

Apr 26-4:54 PM

May 14-10:35 AM

Parametric Equation of a Straight Line:

The parametric form of the equation comes directly from the vector equation. It considers the x-, and ycomponents separately, which can be more convenient.

May 14-7:14 PM

May 16-12:47 PM

May 16-12:47 PM

Assigned Work:

p.433 # 1, 2, 3, 4, 5, 6, 7, 9b, 10

Apr 26-4:51 PM