Equations of a Line in R3

(1) Slope-Intercept: $y=m x+b$

No equivalent form in R3.
(2) Vector form: $\vec{r}=\vec{r}_{0}+t \vec{m} \quad t \in \mathbb{R}$

Each vector now has three components.

$$
(x, y, z)=\left(x_{0}, y_{0}, \mathrm{z}_{0}\right)+t(a, b, c)
$$

(3) Parametric form:

$$
x=x_{0}+t a \quad y=y_{0}+t b \quad z=z_{0}+t c
$$

(4) Cartesian form: $A x+B y+C z+D=0$ In R3, this form represents a plane, not a line.

$$
A x+B y+C=0 \mathrm{~m} R^{2}
$$

May 15-2:45 PM
(5) Symmetric form:

The parametric equations all have a common factor 't'.

$$
x=x_{0}+t a \quad y=y_{0}+t b \quad z=z_{0}+t c
$$

Rearranging each equation for 't' yields:

$$
t=\frac{x-x_{0}}{a} \quad t=\frac{y-y_{0}}{b} \quad t=\frac{z-z_{0}}{c}
$$

Since the values of ' t ' are all the same,

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c} \quad a, b, c \neq 0
$$

Ex. 1 Determine vector, parametric, and symmetric equations for the line passing through
$P(-2,3,5)$ and $Q(-2,4,-1)$.
(a) $\vec{r}=\vec{r}_{0}+t \stackrel{\rightharpoonup}{m}, t \in \mathbb{R}$

$$
\begin{array}{rlrl}
\vec{r}_{0} & =\overrightarrow{O P} \text { or } \overrightarrow{O Q} & \vec{m} & =(\Delta x, \Delta y, \Delta z) \\
& =(-2,3,5) & & \overrightarrow{P Q} \\
& =\overrightarrow{O Q}-\overrightarrow{O P} \\
(x, y, z)=(-2,3,5)+t(0,1,-6) & & =(-2-(-2), 4-3,-1-5) \\
& =(0,1,-6)
\end{array}
$$

(b) $x=-2+o t$

$$
y=3+t
$$

$$
z=5-6 t
$$

(c)

$$
\begin{gathered}
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c} \quad \begin{array}{l}
a, b, c \neq 0 \\
\vec{m}=(a, b, c)
\end{array} \\
x=-2 \quad y=3+t \quad z=5-6 t \\
y-3=t \quad \frac{z-5-5}{}=-6 t \\
\frac{z-5}{-6}=t \\
x=-2 \quad \frac{y-3}{1}=\frac{+z-5}{-6} \\
\text { m }=(0,1,-6)
\end{gathered}
$$

Ex. 2 Given the symmetric equation, determine vector and parametric equations.

$$
\begin{gathered}
\frac{x-3}{5}=\frac{y+2}{3}=\frac{z+5}{7} \\
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c} \\
\vec{m}=(5,3,7) \quad \vec{r}_{0}=(3,-2,-5) \\
\vec{r}=(3,-2,-5)+t(5,3,7) \quad t \in \mathbb{R} \\
x=3+5 t \quad y=-2+3 t \quad z=-5+7 t
\end{gathered}
$$

May 15-10:12 PM

Assigned Work:

p. 449 \# 3, 6, 7, 8, 9, 12, 14

