Vector \& Parametric Equation of a Plane

Equations of a Line in R^{3} :
vector:

$$
\vec{r}=\vec{r}_{0}+t \vec{m}
$$

$$
(x, y, z)=\left(x_{0}, y_{0}, \mathrm{z}_{0}\right)+\mathrm{t}(\mathrm{a}, \mathrm{~b}, \mathrm{c})
$$

parametric:

$$
\begin{aligned}
& x=x_{0}+a t \\
& y=y_{0}+b t \\
& z=z_{0}+c t
\end{aligned}
$$

symmetric

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

May 23-8:30 AM

Vector \& Parametric Equation of a Plane

A plane can be described using a point and two vectors. The vector equation of a plane is written:

$$
\begin{aligned}
& \text { he vector equation of a plane is written: } \\
& \qquad \begin{array}{l}
\vec{r}=\vec{r}_{0}+m \vec{d}_{1}+n \vec{d}_{2} \\
n \in \mathbb{R}
\end{array} \\
& (x, y, z)=\left(x_{0}, y_{0}, z_{0}\right)+\bar{m}\left(a_{1}, b_{1}, c_{1}\right)+n\left(a_{2}, b_{2}, c_{2}\right)
\end{aligned}
$$

where: \vec{r} is the position vector of any point in the plane \vec{r}_{0} is the position vector of a starting point \vec{d}_{1} and \vec{d}_{2} are direction vectors for the plane (they must be noncollinear) m and n are parameters (real numbers)

Vector equation of a plane:

$$
\begin{aligned}
\vec{r} & =\vec{r}_{0}+m \vec{d}_{1}+n \vec{d}_{2} \\
(x, y, z) & =\left(x_{0}, y_{0}, z_{0}\right)+m\left(a_{1}, b_{1}, c_{1}\right)+n\left(a_{2}, b_{2}, c_{2}\right)
\end{aligned}
$$

In parametric form:

$$
\begin{aligned}
& x=x_{0}+m a_{1}+n a_{2} \\
& y=y_{0}+m b_{1}+n b_{2} \\
& z=z_{0}+m c_{1}+n c_{2}
\end{aligned}
$$

Ex. 1 Find the vector equation of the plane containing the points $L(1,2,5), M(-7,4,0)$ and $N(3,1,-2)$.
e.g., $\quad \vec{r}=\overrightarrow{O L}+m \overrightarrow{L M}+n \overrightarrow{M N}$

$$
\vec{r}=(1,2,5)+m(-8,2,-5)+n(10,-3,-2)
$$

$$
\begin{aligned}
\overrightarrow{L M} & =\overrightarrow{O M}-\overrightarrow{O L} \\
& =(-8,2,-5) \\
\overrightarrow{M J} & =\overrightarrow{O W}-\overrightarrow{O M} \\
& =(10,-3,-2)
\end{aligned}
$$

Ex. 2 Does the point $(4,5,-3)$ lie in the plane
$x=4+3 g-6 h, \quad y=1-2 g+6 h, \quad z=6+g-h$
let $P(4,5,-3) \Rightarrow \overrightarrow{O P}=\begin{gathered}(4,5,-3) \\ x y z\end{gathered}$
test $\overrightarrow{O P}$ in parametric eqns.

$$
\left.\begin{array}{rlrl}
4 & =4+3 g-6 h(1) \quad 5 & =1-2 g+6 h(2) & -3
\end{array}\right)=6+g-h(3)
$$

$\therefore(4,5,-3)$ does not lie in plane.

Ex. 3 Where does the plane π intersect with the line L .

$$
\begin{aligned}
\pi: \stackrel{\rightharpoonup}{r}) & =(6,-2,-3)+m(1,3,0)+n(2,2,-1) \\
\mathrm{L}: \stackrel{\rightharpoonup}{r} & =t(0,1,0) \\
& =(0,0,0)+t(0,1,0)
\end{aligned}
$$

want $\vec{r}_{\pi}=\vec{r}_{L}$

$$
\begin{array}{rlrl}
(6,-2,-3)+m & (1,3,0)+n(2,2,-1)=t(0,1,0) \\
6+m+2 n & =00 & -2+3 m+2 n=t(2) & -3-n=0 \\
6+m+2(-3)=0 & -2+3(0)+2(-3) & =t & -3=n \\
6+m-6 & =0 & -2-6 & =t \tag{3}\\
\frac{m}{}=0 & t & =-8
\end{array}
$$

$$
\begin{aligned}
L: \vec{r} & =t(0,1,0) \quad \therefore \text { POI is } \\
& =-8(0,1,0) \\
& =(0,-8,0)
\end{aligned}
$$

May 31-1:40 PM

Assigned Work:

$$
\begin{array}{r}
\text { p.459-460 \#1, 2, 3, 4, 6, 8a, } \\
9,10,11,12 \mathrm{~b}
\end{array}
$$

