Intersection of Lines in R^{3}

Recall: Intersection of Lines in R^{2} (i.e., systems of linear equations)

For two lines in R2, there are three possible outcomes:
(1) One solution (lines intersect at a point).
(2) No solution (lines are parallel, no intersection).
(3) Infinite solutions (lines are coincident).

outcome in R^{2}	algebra	sketch
one solution	result makes sense $($ e.g., $x=3, \mathrm{y}=-5)$	
no solution	result not possible $(\mathrm{e} . \mathrm{g} ., 0=1)$	
infinite solutions	result always true (e.g., $3=3)$	

Intersection of Lines in R^{3}

A linear system may have:
A) One unique solution:

- the lines intersect at one point
- the angle between two lines may be calculated from the dot product of direction vectors
B) No solution:
- the lines do not intersect
- the lines are parallel \& distinct (i.e., in the same plane) OR
- the lines may be skew (i.e., they are not parallel)
- they do not intersect because they lie in different planes
B) No solution:
- the lines do not intersect
- the lines are parallel \& distinct (i.e., in the same plane) OR
- the lines may be skew (i.e., they are not parallel)
- they do not intersect because they lie in different planes
C) Infinite solutions:
- the lines are coincident

A linear system of two (or more) equations is said to be consistent if it has at least one solution, otherwise it is inconsistent (no solutions).

Equations of Lines in R^{2} :

$$
\begin{array}{ll}
\text { slope-intercept } & y=m x+b \\
\text { cartesian } & A x+B y+C=0 \\
\text { vector } & \vec{r}=\vec{r}_{0}+t \vec{m} \quad t \in \mathbb{R} \\
\text { parametric } & x=x_{0}+t m_{x} \\
& y=y_{0}+t m_{y} \quad t \in \mathbb{R}
\end{array}
$$

May 23-9:51 PM

Equations of Lines in R^{3} :
vector

$$
\vec{r}=\vec{r}_{0}+t \vec{m} \quad t \in \mathbb{R}
$$

parametric

$$
\begin{aligned}
& x=x_{0}+t m_{x} \\
& y=y_{0}+t m_{y} \\
& z=z_{0}+t m_{z}
\end{aligned} \quad t \in \mathbb{R}
$$

symmetric

$$
\begin{aligned}
& \quad \frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c} \\
& \vec{d}=(a, b, c) \quad a, b, c \neq 0
\end{aligned}
$$

Ex. 1 Solve the following systems and describe the geometric relationship between the lines.
sub $t=2$ into (2)

$$
\begin{aligned}
2 & =8+2 s \\
-6 & =2 s
\end{aligned}
$$

verify (3) $L S=-3+3 t$

$$
=-3+3(2)
$$

$$
R S=-6-3 S \quad=-3+6
$$

$$
=-6-3(-3)=3
$$

$$
=-6+9 \quad \angle S=R S
$$

$$
=3
$$

\therefore system is consistent.
\therefore solution is a point $P(8,2,3)$

$$
\left[\begin{array}{ll}
\text { (b) } \frac{x+4}{3}=\frac{y-12}{4}=\frac{z-3}{6} & \ell_{1} \\
p_{1}(-4,12,3) \\
\frac{x}{\frac{1}{2}}=\frac{y-10}{\frac{2}{3}}=\frac{z+5}{2} & \ell_{2}
\end{array}\right\} \begin{aligned}
& \text { coll 1 } \\
& \rightarrow \\
& P_{2}(0,10,-5)^{\prime} \\
& (1) \text { Brute force } \rightarrow \text { convert to parametric }
\end{aligned}
$$

\rightarrow solve.
(2) recall: $\vec{d}_{1}=(3,4,6) \quad \vec{d}_{2}=\left(\frac{1}{2}, \frac{2}{3}, 1\right)$
collinear? $\quad \vec{d}_{1}=k \vec{d}_{2}$

$$
\begin{array}{rlrl}
3=k\left(\frac{1}{2}\right) \quad 4 & =k\left(\frac{2}{3}\right) & 6=k(1) \\
\angle S & =3 & & k=4 \\
R S & =6\left(\frac{1}{2}\right), \quad R S & =6\left(\frac{2}{3}\right) & \\
& =3 & =4
\end{array}
$$

May 16-11:48 AM

$$
\begin{aligned}
& \text { (a) } \\
& \vec{r}_{1}=(-2,0,-3)+t(5,1,3) \\
& t \in \mathbb{R} \\
& \vec{r}_{2}=(5,8,-6)+s(-1,2,-3) \\
& s \in \mathbb{R} \\
& \frac{\vec{r}_{1}}{x_{1}=-2+5 t^{6}} \frac{\overrightarrow{r_{2}}}{x_{2}=5-5} \\
& \text { Set } x_{1}=x_{2} \\
& y_{1}=0+t^{2} \quad y_{2}=8+2 s \\
& z_{1}=-3+3 t^{2} \quad z_{2}=-6-3 s \\
& y_{1}=y_{2} \\
& z_{1}=z_{2} \\
& -2+5 t=5-5 \text { (1) } \quad t=8+25 \text { (2) } \\
& -3+3 t=-6-3 s \\
& \text { (1) } \times 2: \begin{aligned}
-4+10 t & =10-2 \mathrm{~s} \\
-4+11 t & =18
\end{aligned} \\
& 11 t=22 \\
& t=2
\end{aligned}
$$

(b) $\frac{x+4}{3}=\frac{y-12}{4}=\frac{z-3}{6}$
$P_{1}(-4,12,3) \frac{x}{\frac{1}{2}}=\frac{y-10}{\frac{2}{3}}=\frac{z+}{1}$
$P_{2}(0,10,-5)^{2}$
test $P_{2}(0,10,-5)$ on l_{1}

$$
\begin{aligned}
\frac{x+4}{3} & =\frac{0+4}{3} & \frac{y-12}{4} & =\frac{10-12}{4} \\
& =\frac{4}{3} & & =\frac{-2}{4} \\
& & =\frac{-1}{2} &
\end{aligned}=\frac{-5-3}{6}
$$

\because inconsistent results
$\therefore P_{2}$ is not on l_{1}
\therefore no solution (lines are parallel but distinct.
May 23-10:30 PM

Assigned Work:

$$
\text { p. } 497 \text { \# 8, 9, 11, } 12
$$

