Intersections of a Line and a Plane (in R^{3})

Three possibilities:
(a) no solution
(b) one solution

The line passes through the plane; one point of intersection.
(c) infinite solutions The line is in the plane; infinite points of intersection (i.e., the solution is the entire line).

```
Ex. 1 Find the intersection of the line and the plane:
\(\ell: \quad \vec{r}=(4, \stackrel{\vec{r}}{6},-2)+t(-1,2,1) \longrightarrow \quad t \in \mathbb{R}\)
\(\pi: \quad 2 x-y+6 z+10=0\)
                                    \(x=4-t\)
                                    \(y=6+2 t\)
                                    \(z=-2+t\)
    \(2(4-t)-(6+2 t)+6(-2+t)+10=0\)
    \(8-2 t-6-2 t-12+6 t+10=0\)
        \(0+2 t=0\)
        \(t=0\)
    to find POI, set \(t=0\) :
        \(\vec{r}=(4,6,-2)+(0)(-1,2,1)\)
            \(=(a, b,-2)\)
    \(\therefore\) POI is \(P(4,6,-2)\)
```


Ex. 2 Given the equation of a line and plane: (a) Is there any way to predict the number of solutions?
(b) Determine the intersection (if any).

$$
\vec{n} \cdot \vec{d} ?
$$

$$
\begin{gathered}
\quad \ell \\
x=5+t \\
y=4+2 t \\
z=7+2 t \\
\vec{d}=(1,2,2)
\end{gathered}
$$

$$
2 x+3 y-4 z-7=0
$$

$$
\vec{n}=(2,3,-4)
$$

$$
\begin{aligned}
& \vec{n} \cdot \vec{d}=2(1)+3(2)+(-4)(2) \\
&=2+6-8 \\
&=0 \quad\left(\theta=90^{\circ}\right) \\
& \vec{n} \perp \vec{d}
\end{aligned}
$$

\therefore infinite or no solution

Ex. 2 Given the equation of a line and plane:
(a) Is there any way to predict the number of solutions?
(b) Determine the intersection (if any).

$$
\begin{aligned}
& x=5+t \\
& y=4+2 t \\
& 2 x+3 y-4 z-7=0 \\
& z=7+2 t \\
& 2(5+t)+3(4+2 t)-4(7+2 t)-7=0 \\
& 10+2 t+12+6 t-28-8 t-7=0 \\
& -13+0 t=0 \\
& \text { notilibe } \quad\left\{\begin{array}{r}
-13=0 \\
0=13
\end{array}\right. \\
& \text { inconsistent system } \\
& \longleftrightarrow \quad \therefore \text { no solution } \\
& \text { lime pacaeld to } \\
& \text { plane (but distinct) }
\end{aligned}
$$

May 16-11:48 AM

Assigned Work:

p. 496 \# 3, 4, 5, 6, 7, 13

