Intersections of Two Planes
(1) If two planes intersect along a line, the system has an infinite number of solutions, as described by the parametric equations of the
 line.
(2) If two planes are coincident (ie., same plane), the system has an infinite number of solutions, as described by either of the two given equations of the plane.
(3) If two planes are parallel (ie., their normal vectors are parallel) and distinct, the system has no solution.

May 31-12:33 PM

Ex. 1 Solve each system and give a geometric description of the planes.
(i.e., lineintefsection, coincident, parallel \& distinct)
a)

$$
\begin{align*}
& x+4 y-3 z+6=0 \\
& 2 x+8 y-6 z+11=0 \tag{2}
\end{align*}
$$

(1) $\vec{n}_{1}=(1,4,-3)$

$$
\vec{n}_{2}=(2,8,-6)
$$

(1) $x 2: \frac{2 x+8 y-6 z+12}{}=0$

$$
\frac{2}{1}=2 \quad \frac{8}{4}=2 \quad \frac{-6}{-3}=2
$$

$$
-1=0
$$

$$
\vec{n}_{2}=2 \vec{n}_{1}
$$

not possible
inconsistent \therefore no solution parallel but distend
b) $\quad 5 x-y+2 z-9=0$

$$
\overrightarrow{n_{1}}=(5,-1,2)
$$

(1) $\times 5: 25 x-5 y+10 z-45=0$
(1) $\overrightarrow{n_{1}}=(5,-1,2), ~(2) ~ \overrightarrow{n_{2}}=(-25,5,-10)$

$$
-25 x+5 y-10 z+45=0 \text { (2) } \quad \overrightarrow{n_{2}}=(-25,5,-10)
$$

$$
\vec{n}_{1}=k \vec{n}_{2} ?
$$

$$
\begin{aligned}
+0+0+0 & =0 & & n_{1}
\end{aligned}=k
$$

always true $k=\frac{-1}{5}$
\therefore infinite solutions Same plane

$$
-1=k(5)
$$

$$
\begin{aligned}
& k=\frac{-1}{5} \\
& 2=k(-10) \\
& k=\frac{-1}{5}
\end{aligned}
$$

c)

$$
\begin{align*}
& 4 x+7 y-33 z+17=0 \\
& 8 x+5 y-3 z+7=0 \tag{2}
\end{align*}
$$

10 $x 2: 8 x+14 y-66 z+34=0$

$$
\frac{-9 y+63 z-27}{-9}=\frac{0}{-9}
$$

(1) $\vec{n}_{1}=(4,7,-33)$

$$
\vec{n}_{2}=(8,5,-3)
$$

planes not parallel solution is line

$$
y-7 z+3=0
$$

$$
y=7 z-3 \quad \text { let } z=t
$$

$$
y=7 t-3
$$

Sub z and y into (1)

$$
\begin{aligned}
4 x+7(7 t-3)-33 t+17 & =0 \\
4 x+49 t-21-33 t+17 & =0 \\
& =0 \\
4 x+16 t-4 & =-16 t+4 \\
4 x & =-4 t+1 \\
y & =7 t-3 \quad t \in \mathbb{R} \\
z & =t+0
\end{aligned}
$$

$$
\vec{r}=(1,-3,0)+t(-4,7,1)
$$

May 31-1:13 PM

Assigned Work

p. 516 \# 1, 2, 3, 6, 8, 10

May 31-1:31 PM

