Solving Systems of Equations using Matrices

Consider a system of three equations in three unknowns:

$$
\begin{array}{r}
x+2 y+2 z=9 \\
x+y=1 \\
2 x+3 y-z=1
\end{array}
$$

A matrix is an equivalent representation of this information:
(1) $\left[\begin{array}{ccc}x & y & z \\ 1 & 2 & 2 \\ 1 & 1 & 0 \\ 2 & 3 & -1\end{array}\right]$
coefficient matrix
(1)
(2)
(3) $\quad\left[\begin{array}{lll|l}1 & y & z & 2 \\ 1 & 2 & 9 \\ 1 & 1 & 0 & 1 \\ 2 & 3 & -1 & 1\end{array}\right]$
augmented matrix (includes constants)

Jun 2-5:53 PM

Elementary row operations can be used to modify and solve systems of equations in matrix form.
(1) Multiply a row by a nonzero constant.
(2) Interchange any pair of rows.
(3) Add (or subtract) a multiple of one row to a second row, replacing the second row.

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 2 & 2 & 9 \\
1 & 1 & 0 & 1 \\
2 & 3 & -1 & 1
\end{array}\right] \xrightarrow{-r_{1}}\left[\begin{array}{ccc|c}
-1 & -2 & -2 & -9 \\
1 & 1 & 0 & 1 \\
2 & 3 & -1 & 1
\end{array}\right] \underset{\substack{r_{2}}}{\substack{r_{1}-\sqrt[1]{2}}}\left[\begin{array}{ccc|c}
-1 & -2 & -2 & -9 \\
0 & -1 & -2 & -8 \\
2 & 3 & -1 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccc|c}
1 & 2 & 2 & 9 \\
0 & -1 & -2 & -8 \\
2 & 3 & -1 & 1
\end{array}\right] \quad-1 \text { (no wi) + row 2 replaces row 2 }}
\end{aligned}
$$

To find solutions to the system, we continue to manipulate the matrix until it is in row-echelon form:

$$
\left[\begin{array}{lll|l}
a & b & c & p \\
0 & d & e & q \\
0 & 0 & f & r
\end{array}\right]
$$

notice the upper-triangle of non-zero values, and the lower-triangle of zeroes

Continuing with our previous example, row 1 and row 2 are already in row-echelon form:

$$
\begin{array}{rl}
{\left[\begin{array}{ccc|c}
1 & 2 & 2 & 9 \\
0 & -1 & -2 & -8 \\
2 & 3 & -1 & 1
\end{array}\right]} & \xrightarrow{-2 r_{1}+r_{3}}\left[\begin{array}{ccc|c}
1 & 2 & 2 & 9 \\
0 & -1 & -2 & -8 \\
0 & 1 & -1 & -5 \\
0 & -17
\end{array}\right] \\
0 & 0
\end{array} \xrightarrow{-r_{2}+r_{3}}\left[\begin{array}{ccc|c}
1 & 2 & 2 & 9 \\
0 & -1 & -2 & -8 \\
0 & 0 & -3 & -9
\end{array}\right], ~ ل
$$

Jun 2-5:55 PM

The row-echelon augmented matrix is equivalent to a system of new, but equivalent, equations:
\(\left[\begin{array}{ccc|c}1 \& 2 \& 2 \& 9

0 \& -1 \& -2 \& -8

0 \& 0 \& -3 \& -9\end{array}\right] \Leftrightarrow \Leftrightarrow\)| $x+2 y+2 z$ | $=9$ |
| ---: | :--- |
| $-y-2 z$ | $=-8$ |
| $-3 z$ | $=-9$ |

This system is easily solved for z, and the rest can be solved by back-substitution. This technique is called Gaussian Elimination.

$$
\begin{array}{rlr}
-3 z=-9 & -y-2 z & =-8 \\
z=3 & x+2 y+2 z=9 \\
-y-2(3)=-8 & x+2(2)+2(3)=9 \\
8-6=y & x+4+6=9 \\
y=2 & x=-1
\end{array}
$$

Jun 3-8:08 AM

It is also possible to find solutions directly from the matrix by continuing to work towards a reduced fow-echelon form. Solving this way is called Gauss-Jordan elimination.
\(\left[\begin{array}{lll|l}1 \& 0 \& 0 \& a

0 \& 1 \& 0 \& b

0 \& 0 \& 1 \& c\end{array}\right]\) which yields | $x=a$ |
| :--- |
| $y=b$ |
| $z=c$ |

Ex. 1 Write in reduced row-echelon form and solve

$$
\left[\begin{array}{ccc|c}
1 & 2 & 2 & 9 \\
0 & -1 & -2 & -8 \\
0 & 0 & -3 & -9
\end{array}\right]
$$

Jun 3-8:18 AM

Assigned Work:

p. 588 \# 4, 6b, 8b, 10ace
p. 594 \# 1c, 3ace

read (diagrams \& text) on
p.520-521
p.526-527

