Solving Linear Inequalities

To solve an inequality, find all values that satisfy the inequality.

Consider: 3x - 1 < 8

The simplest way to visualize the solution is to graph and compare the LS and RS:

Where is the line y = 3x - 1less than the line y = 8?

$$\chi < 3$$

Sep 30-10:29 PM

We have also solved such inequalities by:

- (1) solving the corresponding equation, then
- (2) testing values around the solution(s).

(1) Solve
$$3x - 1 = 8$$

$$3x = 9$$
$$x = 3$$

$$3x - 1 < 8$$
LS RS

(2) Test
$$x < \frac{3}{x}$$
 and $x > \frac{3}{x}$

$$LS = 3(2) - 1$$
 RS =8 $CS = 3(4) - 1$

$$3x - 1 < 8$$

(1) Solve
$$3x - 1 = 8$$

 $3x = 9$

(2) Test x < 3: 3(2) - 1 = 5, pass

Test x>3: $3(\mathbf{4})-1=11$, fail

The solution can be represented as:

- (a) set notation: $\{x \in \mathbb{R} | x < 3\}$
- (b) interval notation: $x \in (-\infty, 3)$
- (c) a number line:

Sep 30-10:37 PM

Algebraic Operations on Inequalities

What are the effects of adding, subtracting, multiplying, and dividing on a very simple inequality?

Start with 4 < 8, which is obviously true.

LS = 12 add positive: CS = 4+2 CS = 8+2 multiply by positive: CS = 12 CS = 12

add negative: LS = 1 LS = 5 multiply by negative: LS = -16+(-3)

LSLRSV

 $\times (-4) \qquad RS = -32$

subtract positive:

-(2)

divide by positive: $-164-32 \times$ $\div(2)$ 2 < 4 / LS > 2S

subtract negative:

divide by negative:

Solving Inequalities Algebraically:

We can use the same basic operations (add, subtract, multiply, divide) that we would with a regular equation.

Note: When multiplying or dividing by a negative value, the direction of the inequality must be switched.

Ex. Solve

(a)
$$2x - 3 > 5$$
 (b) $\frac{-1}{3}(x + 4) \le -7$ [-3] $2x > 8$ (1) $(x + 4) \ge 21$ $x > 4$ $x + 4 \ge 21$ $x \ge 17$

Sep 30-10:55 PM

Assigned Work:

p.213 # 5bdf, 6be, 7bdf, 8, 9, 11, 15, 19

Oct 1-10:21 AM