1. You win $\$ 1.5$ million in a lottery and invest it in a GIC that earns 5% per annum, compounded yearly.
(a) What is it worth after 4 years? $(\$ 1,823,259.38)$
(b) When will it double in value? (14.2 years)
2. Your new car cost $\$ 23,000$ new and depreciates (i.e., loses value) 30% annually. You want to trade it in when it reaches a value of $\$ 10,000$. How long should you keep the car? (2.3 years)
3. A weight-loss program claims that, after the first two days, weight loss is exponential. The weight loss is expressed as a percent of the client's changing weight. A client who is participating in the program has a weight of 98 kg four days after starting the program. After 20 days, the weight is 95 kg .
(a) What will the weight be after 40 days? (91.2 kg)
(b) What is the rate of weight loss? Express this value as a percent per day. (about 0.2% per day)
4. Newton's Law of Cooling: $T=\left(T_{0}-S\right) e^{k t}+S$, where T is the final temperature, T_{0} is the initial temperature, S is the temperature of the surroundings, k is a constant, and t is time.

Suppose you are sitting outside on a summer day reading a book. The book reaches a temperature of $30^{\circ} \mathrm{C}$. When you bring the book indoors $\left(22^{\circ} \mathrm{C}\right)$, it takes 20 minutes before the book cools to $25^{\circ} \mathrm{C}$. How much more time will pass before the book reaches $22.5^{\circ} \mathrm{C}$? (36.6 minutes)
5. The logistic equation, $P(t)=\frac{A}{1+b e^{-k t}}$, is a function that models a population in which the growth is initially rapid but eventually levels off. The growth of a bacterial culture is modelled where $A=6, b=6$, and $k=0.3$, where $\mathrm{P}(\mathrm{t})$ models the mass of the culture in grams.
(a) What is the initial mass of the culture? $(0.857 \mathrm{~g})$
(b) Graph $P(t)$ using graphing technology, and use your graph to show that the maximum mass is 6 grams.
6. Karen packs her lunch each morning at 7 am and includes a frozen juice box $\left(-10^{\circ} \mathrm{C}\right)$. At school, the lunch sits in her locker at room temperature $\left(20^{\circ} \mathrm{C}\right)$ until lunch (noon). At 10 am , the juice is still frozen $\left(-2^{\circ} \mathrm{C}\right)$. What will the juice temperature be at lunch? $\left(2.1^{\circ} \mathrm{C}\right)$
7. The following data represents a car's velocity, $v(t)$, after the driver steps on the brake, where t measures how long the driver has been braking in seconds.

Time (s)	2	4	6	8	10
Velocity (km/h)	31	20	14	9	5

(a) Create an algebraic model for this data. $v(t)=(49.8675)(0.8006)^{t}$
(b) Determine when the driver has 'stopped' the car. The model fails for $v=0$, so solve for $v=0.1$. ($t=28 \mathrm{~s}$)
(c) What was the initial velocity when the brakes were first applied? ($50 \mathrm{~km} / \mathrm{h}$)
8. Kenneth paid $\$ 16,000$ for a car which depreciates 30% per year. At the same time, Karen paid $\$ 8,000$ for a painting which will appreciate 3% per year. When will their investments be worth the same amount? (1.79 years)
9. The spread of a flu virus through a population of 1000 people is modelled by $N(t)=\frac{1000}{1+990 e^{-0.7 t}}$, where $N(t)$ is the total number infected after t days. How long will it take for 901 people to be infected? (13 days)

