MHF 4U, Grade 12 Advance Functions Exam Review

Part A: Polynomial \& Rational Functions

1. Determine the equation of the family of polynomial functions with zeros $-2,0$, and 3 .
2. True or False: -3 is a root of the polynomial function $f(x)=x^{4}-5 x^{2}+12 x+16$.
3. True or False: $x+2$ is a factor of the polynomial $x^{3}-5 x^{2}-22 x-16$.
4. Determine the vertical asymptote of the reciprocal of $f(x)=3 x+2$.
5. Determine the equation of the horizontal asymptote of $f(x)=\frac{4 x-3}{2 x+5}$.
6. True or False: $f(x)=\frac{x^{2}-9}{x-3}$ has an oblique asymptote.
7. Use the factor theorem and long division to fully factor $x^{3}+9 x^{2}+8 x-60$.
8. Determine an expression for $f(x)$ in which $f(x)$ is a quartic function, $f(x)>0$ when $-3<x<-1, f(x) \leq 0$ when $x<-3$ or $x>-1, f(x)$ has a double root when $x=5$, and $f(4)=-70$.
9. The bacteria count, g , in thousands, for a sample of pond water, that is left to sit over time, t , in days can be modeled by the equation $g(t)=\frac{15 t}{t^{2}+9}, t>0$. When will the bacteria count be greater than one thousand? Round your answer to one decimal place.

Part B: Trigonometric Functions

1. Convert 115° to radians. Express your answer as a fraction of π, in lowest terms.
2. State the exact value of $\tan \frac{7 \pi}{6}$.
3. Determine the value of $\sec 2.37$. Round your answer to 3 decimal places.
4. Determine the two exact radian values of $\theta, 0 \leq \theta \leq 2 \pi$, for $\sin \theta=-\frac{\sqrt{3}}{2}$.
5. State the period, amplitude, vertical displacement and phase shift of the function $y=-2 \sin \frac{2}{3}\left(x-\frac{\pi}{6}\right)-5$.
6. Determine the exact solutions of $2 \cos ^{2} x+\cos x-1=0$ for x in the interval $0 \leq x \leq 2 \pi$.
7. The population of blackflies at a lake in northern Ontario can be modeled by the function $P(t)=23.7 \cos \left(\frac{\pi}{6}(t-7)\right)+24.1$, where P is in millions and t is in months. When is the population more than 40 million? Round answers to the nearest day.
8. Solve $\sin 2 x+2 \cos ^{2} x=0$ for $0 \leq x \leq 2 \pi$.

Part C: Exponential \& Logarithmic Functions

1. Evaluate $\log 23$. Round your answer to three decimal places.
2. Express $\log _{5} 15-\log _{5} 3+\log _{5} 7$ as a single logarithm.
3. Evaluate $\log _{3} 14$. Round your answer to three decimal places.
4. Use the properties of logarithms to evaluate $\log _{2} \sqrt{32}$.
5. Use the properties of logarithms to evaluate $\log _{9} 9$
6. State the equation of the asymptote for the function $y=-2 \log \left[\frac{1}{3}(x+4)\right]-1$.
7. Solve $\log _{7}(x+1)+\log _{7}(x-5)=1$.
8. A wound, initially with an area of $40 \mathrm{~cm}^{2}$, heals according to the formula $A(t)=40\left(10^{-0.023 t}\right)$ where $A(t)$ is the area of the wound in square centimeters after t days of healing. In how many days will 60% of the wound be healed? Round your answer to one decimal place.
9. The pH of a substance is given by the equation $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$where $\left[\mathrm{H}^{+}\right]$is the hydrogen ion concentration in moles per litre ($\mathrm{mol} / \mathrm{L}$). Determine the hydrogen ion concentration in vinegar with a pH of 2.2. Round your answer to four decimal places.

Part D: Characteristics of Functions

1. State whether the function $f(x)=2 x^{3}+x$ is even, odd, or neither.
2. State the domain of $y=2^{x-4}+5$.
3. State the range of $y=-3 \sqrt{x+8}-4$.
4. State the interval of increase for $y=-2(x+1)^{2}-4$.
5. State the interval of decrease for $y=4\left|\frac{1}{3}(x-7)\right|+5$.
6. True or False: The average rate of change is represented graphically by the slope of a secant.
7. True or False: The minimum point occurs when the slopes of the tangents are positive before the point and the slopes of the tangents are negative after the point.
8. True or False: $x=3.99$ is an approximate solution of the equation $-3 \csc x=x$.
9. State the domain of the function $f(x)=x^{2}+\sqrt{x+3}$.
10. State the domain of the function $f(x)=\frac{\log x}{|x-2|}$.
11.If $f(x)=\cot x$ and $g(x)=x^{2}$, determine $f(g(-2))$. Round your answer to three decimal place.
12.Determine the domain and range of the function $f(x)=\sin \left(2^{x}\right)$.
13.A person's blood pressure, $\mathrm{P}(\mathrm{t})$, in millimeters of mercury (mm Hg), is modeled by the function $P(t)=100-20 \cos \left(\frac{8 \pi}{3} t\right)$, where t is the time in seconds. Calculate the average rate of change in a person's blood pressure between $t=0.2$ seconds and $t=0.3$ seconds. 14. Solve $\frac{\left(x^{2}-1\right)}{\sin x}<0$ for $0 \leq x \leq 2 \pi$.

ANSWERS

PART A

1. $\mathrm{y}=\mathrm{kx}(\mathrm{x}+2)(\mathrm{x}-3)$
2. false
3. true
4. $x=-2 / 3$
5. $\mathrm{y}=2$
6. false
7. $(x-2)(x+5)(x+6)$
8. $f(x)=-2(x+3)(x+1)(x-5)^{2}$
9. $0.6<t<14.4$

PART B

1. $\frac{23 \pi}{36}$
2. $\frac{1}{\sqrt{3}}$
3. -1.395
4. $\theta=\frac{4 \pi}{3}, \frac{5 \pi}{3}$
5. Period $=3 \pi$, Amplitude $=2$,

Phase Shift $=\frac{\pi}{6}$, Vertical Displ. $=-5$
6. $x=\frac{\pi}{3}, \frac{5 \pi}{3}, \pi$
7. May 12 - August 18
8. $x=\frac{\pi}{2}, \frac{3 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4}$

PART C

PART D

1. 1.362
2. $\log _{5} 35$
3. 2.402
4. $\frac{5}{2}$
5. 1
6. $x=-4$
7. $x=6$
8. 17.3 days
9. 0.0063
10. odd
11. $\{x \in \mathbb{R}\}$
12. $\{y \in \mathbb{R} \mid y<-4\}$
13. $\{x \in \mathbb{R} \mid x<-1\}$
14. $\{x \in \mathbb{R} \mid x<7\}$
15. True
16. False
17. $D=\{x \in \mathbb{R}\}, R=\{y \in \mathbb{R} \mid-1 \leq y<1\}$
18. True
19. $\{x \in \mathbb{R} \mid x \geq-3\}$
20. $\{x \in \mathbb{R} \mid x>0, x \neq 2\}$
21. 0.864
22. 140
23. $x \in(0,1), x \in(\pi, 2 \pi)$
