Optimizing Distance

March 21/2018

Optimization:

To realize the best possible outcome, subject to a set of restrictions.

Mathematically, this usually refers to a maximum or minimum, which can be identified through the use of calculus.

Assigned Work:

p.147 # 15, 16, 20 Handout # 1-5, 8, 9

$$d(x) = (\chi^{4} - 5\chi^{2} + 9)^{\frac{1}{2}}$$

$$d'(x) = \frac{1}{2}(\chi^{4} - 5\chi^{2} + 9)^{\frac{1}{2}}(4\chi^{2} - 10\chi)$$

$$= \frac{2\chi(2\chi^{2} - 5)}{2\sqrt{\chi^{4} - 5\chi^{2} + 9}}$$

$$CV: \text{ set } d'(x) = 0 \qquad \text{ there are no}$$

$$\chi = 0, \ 2\chi^{2} - 5 = 0 \qquad \text{ there are no}$$

$$\chi = \pm \sqrt{2} \qquad \text{ there are no}$$

$$classify: \chi \in (-10, 10)$$

$$\lim_{\chi \to -\infty} d(x) = \infty \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$d(-\sqrt{2}) \qquad d(0) \qquad d(\sqrt{2}) \qquad = 1.66$$

$$\lim_{\chi \to -\infty} d\sin (x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d\cos (x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d\cos (x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d\cos (x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d\cos (x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d\cos (x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = \infty$$

$$\lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = 0$$

$$\lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to -\infty} d(x) = 0$$

$$\lim_{\chi \to -\infty} d(x) = 0 \qquad \lim_{\chi \to$$

Ex.2 (see p.143 Exercise # 3)

Ian's house is located 20 km north of Nada's house. One morning, Ian leaves his house and jogs south at a 8km/h. At the same time, Nada leaves her house and jogs east at 6km/h.

If they both run for 2.5 hours, when will lan and Nada be closest together?

Ex.3 (see p.147 #15)

Assigned Work:

A train leaves the station at 10:00 a.m. and travels due south at 60 km/h. Another train has been heading due west at 45 km/h and reaches the same station at 11:00 a.m.

At what time of day (in hours and minutes) were the two trains closest to each other?

sketch:

 $(\chi - (-3))^2 + ((\chi - 3)^2 - 3)^2$

$$WS # 4.$$

$$(0+8t,\sqrt{2})$$

$$\chi_{1},y_{1}$$

$$\sqrt{5}$$

$$\sqrt{5}$$