Recall: Given
$$f(x) = b^x$$

$$f'(x) = b^x \lim_{h \to 0} \frac{b^h - 1}{h}$$

Notice that the limit does not depend on x, only b. By taking the ratio,

$$\frac{f'(x)}{f(x)} = \lim_{h \to 0} \frac{b^h - 1}{h}$$

we are able to isolate the limit. Now we consider this ratio from available data (graphing technology).

Let	$f(x) = 2^x$		c = 1	
\mathcal{X}	f(x)	f'(x)	$\frac{f'(x)}{f(x)}$	10 8 b = 2
0	1	0.69	0.69 = 0.69	$f(x) = 2^{2}$ 1.39
1	2	1.39		-2 -1 0 1 2 3
2	4	2.77		c = 2
3				$b = 2$ $f(x) = 2^{\frac{1}{2}}$ $-2 - 1 0 1 2 3$

Let	$f(x) = 2^x$		14 c=1	
x	f(x)	f'(x)	$\frac{f'(x)}{f(x)}$	12 10 8 b = 2
0	1	0.69	0.69	$f(x) = 2^{2}$ -2 -1 0 1.39 1 2 3
1	2	1.39	0.695	↑ c=2
2	4	2.77	0.6925	12 10
3	8	5.55	0.69375	$b = 2$ $f(x) = 2^{\frac{2}{3}}$ 0 (2, 4) 1 2.77
				-2 -1 0/ 1 2 3

Let j	$f(x) = 3^x$		14 c = 0 b = 3	
X	f(x)	f'(x)	$\frac{f'(x)}{f(x)}$	D=3 12-
0	1	1.1	1.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2	3 9	3.3 9.89	1.1 1.1	b = 3 12-
3	27	29.66	1.1	8 6 (1, 3) 3.3
				f(x) 30 / 0 1 2 3

Can we represent this ratio with a function?

Is there a function g(x) such that:

$$g(2) \doteq 0.69$$

$$g(e) = 1$$

$$g(3) \doteq 1.10$$

Focus on the result with 'e'. What function, with an input of 'e', would yield 1?

Consider the question another way: What function, with an input of 1, would yield 'e'?

$$g(e) = 1$$

Focus on the result with 'e'. What function, with an input of 'e', would yield 1?

Consider the question another way: What function, with 7 an input of 1, would yield 'e'?

$$f(1) = \epsilon$$

$$f(1) = e$$
 $f(x) = e^{x}$ $y = e^{x}$
 $f(i) = e^{i}$ for inverse
 $= e^{i}$ $x = \log y$

Inverse

$$x = \log_e y$$

$$y = log_e x$$

$$g(x) = log_e x$$

 $g(x) = ln x$
 $natural$
 log_e

$$g(x) = \ln x$$

Derivative of General Exponential Functions

Consider $f(x) = e^x$, where 'e' is Euler's number, $e \doteq 2.718$.

From the graph, it is clearly a function, which means it must have an inverse (which turns out to also be a function).

The inverse is

$$g(x) = \ln(x)$$

(pronounced "lawn") which is the natural logarithm.

It can also be written

$$g(x) = \log_e(x)$$

Given $f(x) = b^x$, we used limits to determine

$$f'(x) = b^x \lim_{h \to 0} \frac{b^h - 1}{h}$$

By using graphs and tangent lines, we can show (numerically) that:

$$\lim_{h\to 0} \frac{b^h - 1}{h} = \log_e(b) = \ln(b)$$

Therefore, given

$$f(x) = b^x$$

$$f'(x) = \ln(b)b^x$$

Ex. Determine the derivative of each. (a) $f(x) = 7^x$ (b) $y = 5^{\sqrt{x}}$ (a) $f(x) = 7^{x}$ (b) $y = 5^{\sqrt{x}}$ (c) $f'(x) = (\ln 7)(7^{x})$ $y' = (\ln 5)(5^{\sqrt{x}})(\frac{1}{2\sqrt{x}})$ $= \ln 7 + 7^{x} ?$ $\sqrt{x} = x^{\frac{1}{2}}$ $\frac{d}{dx}(x^{\frac{1}{2}}) = \frac{1}{2}x^{-\frac{1}{2}}$ $\frac{d}{dx}(x^{\frac{1}{2}}) = \frac{1}{2}x^{\frac{1}{2}}$ $\frac{d}{dx}(x^{\frac{1}{2}}) = \frac{1}{2}x$

p.240 # 1, 2, 4, 5, 6, 9

Deriv of e^x Demo.ggb