Starting with any vector \vec{a}, then $k \vec{a}$ represents a scalar multiplication by a factor of k .
k can also be referred to as the scale factor, and it can have the following effects:
$|k|>1 \quad$, stretch
$|k|<1 \quad$, compress
$k<0 \quad$, reflect (i.e., opposite direction)

Effects of scalar multiplication, $k \vec{a}$, on vector \vec{a}		
k	effect	illustration
$k>1$	stretch, same direction	\longrightarrow
$k=1$	original vector	\longrightarrow
$0<k<1$	compress, same direction	\rightarrow
$k=0$	zero vector $\xrightarrow{\longrightarrow}$	
$-1<k<0$	compress, opposite direction	
$k=-1$	opposite vector	
$k<-1$	stretch, opposite direction	

Two vectors are said to be collinear if and only if:

$$
\vec{a}=k \vec{b}, \text { where } k \in \mathbb{R}
$$

Some examples:

As previously discussed, a vector has both magnitude

direction of a vector depending upon the situation
Ex. 1 Vectors x and y are unit vectors that make an angle of 30 degrees between them. Determine $2 \vec{x}-\vec{y}$

$$
\begin{aligned}
& l=|2 \vec{x}-\vec{y}|^{20}+2 \vec{x} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& |2 \vec{x}-\vec{y}|^{2}=2^{2}+1^{2}-2(2)(1) \cos 30^{\circ} \\
& |2 \vec{x}-\vec{y}|^{2}=4+1-\underset{2}{4}\left(\frac{\sqrt{3}}{x_{1}}\right) \\
& |2 \vec{x}-\vec{y}|^{2}=5-2 \sqrt{3} \\
& |2 \vec{x}-\vec{y}|=\sqrt{5-2 \sqrt{3}}, \quad \ell>0 \\
& \doteq 1.24 \\
& l=|2 \vec{x}-\vec{y}|^{\left(\theta_{\text {end }}\right)} \\
& \frac{\sin \theta}{1}=\frac{\sin 30^{\circ}}{|2 \vec{x}-\vec{y}|} \\
& \sin \theta=\frac{\frac{1}{2}}{\sqrt{5-2 \sqrt{3}}} \\
& \text { RAA }=23.8^{\circ} \\
& \theta=23.8^{\circ} \\
& Q 2 \\
& \begin{array}{l}
\text { (S)(A) } \\
T 2 \operatorname{inad}\left(>180^{\circ}\right)
\end{array} \\
& \therefore 2 \vec{x}-\vec{y} \doteq 1.24\left[23.8^{\circ} \mathrm{CW} \text { to } \vec{x}\right]
\end{aligned}
$$

Ex. 2 An airplane flies $\mathrm{N} 30^{\circ}$
E at an airspeed of $240 \mathrm{~km} / \mathrm{h}$.
(a) Represent velocity using vector notation.
(b) Sketch this situation.
(c) The return flight occurs at 150% of the original speed.

Sketch and represent using vector notation.
(a) $\vec{v}_{1}=240 \mathrm{~km} / \mathrm{h}\left[\mathrm{N} 30^{\circ} \mathrm{E}\right]$

$$
=240 \mathrm{~km} / \mathrm{h}\left[36^{\circ} \mathrm{E} \text { of } \mathrm{N}\right]
$$

(b)

(c) $k=-1.5$

$$
\begin{aligned}
\vec{V}_{2} & =-1.5 \vec{v}_{1} \\
& =-1.5(240)\left[N 30^{\circ} \mathrm{E}\right] \\
& =-360\left[N 30^{\circ} \mathrm{E}\right] \\
& =360\left[S 30^{\circ} \mathrm{W}\right]
\end{aligned}
$$

In math, physics, and other fields making use of vectors, we are often interested in a unit vector.

A unit vector is collinear to a given vector, having a magnitude (i.e., length) of one.

Given vector $\vec{v} \quad$, the corresponding unit vector is $\vec{u}=\frac{\vec{v}}{|\vec{v}|}$

$$
\begin{aligned}
\vec{v} & =5[N] \\
\vec{u} & =\frac{\vec{v}}{|\vec{v}|} \\
& =\frac{\mid \nabla[N]}{8} \\
\vec{u} & =1[N]
\end{aligned}
$$

Assigned Work:

p. 299 \# 1, 5, 7, 12, 14, 15, 19, 21*

