Operations with Vectors in R²

Apr. 26/2018

Recall: A unit vector is a vector of length one (1).

For unit vectors along the x- and y-axes, we use:

$$\vec{i} = (1,0) \qquad \stackrel{\wedge}{\cancel{x}}$$

$$\vec{j} = (0,1) \qquad \stackrel{\wedge}{\cancel{y}}$$

These are the standard <u>basis vectors</u> for R², meaning that any vector in R² can be expressed in terms of **i** and **j**.

Apr 27-6:20 PM

Any point, P(a,b), can be represented as an <u>algebraic</u> <u>vector</u> expressed in terms of the unit vectors:

$$\overrightarrow{OP} = (a, b) = a\vec{i} + b\vec{j}$$

Apr 27-8:02 PM

Difference of Vectors

The difference of two position vectors gives the vector between the original points (from the second to the first).

$$\overrightarrow{OA} - \overrightarrow{OD} = (a,b) - (c,d)$$

$$= a\vec{i} + b\vec{j} - (c\vec{i} + d\vec{j})$$

$$= a\vec{i} + b\vec{j} - c\vec{i} - d\vec{j}$$

$$= (a-c)\vec{i} + (b-d)\vec{j}$$

$$= (a-c,b-d)$$

$$= \overrightarrow{DA}$$

Difference of Vectors

The difference of two position vectors gives the vector between the original points (from the second to the first).

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

Apr 27-8:20 PM

Difference of Vectors

The difference of two position vectors gives the vector between the original points (from the second to the first).

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

which is the distance formula between points A and B.

May 2-8:43 AM

Ex.3 Given
$$\vec{a} = \vec{i} - 5\vec{j}$$
 and $\vec{b} = 4\vec{i} - 10\vec{j}$, find $|\vec{a} - 2\vec{b}|$.

NOTE: Solving problems using algebraic vectors (distance formula) can sometimes be simpler than solving them using geometric vectors (cosine law).

$$\begin{array}{rcl}
\vec{a} - 2\vec{b} &= (\vec{i} - 5\vec{j}) - 2(4\vec{i} - 10\vec{j}) \\
&= \vec{i} - 5\vec{j} - 8\vec{i} + 70\vec{j} \\
&= -7\vec{i} + 15\vec{j}
\end{array}$$

$$\begin{vmatrix}
\vec{a} - 2\vec{b}
\end{vmatrix} = \sqrt{(-7)^2 + (15)^2}$$

$$= \sqrt{9 + 225}$$

$$= \sqrt{274}$$

May 2-2:46 PM

May 2-2:49 PM