Pascal's Triangle

Oct 3/2018

Discovered by Blaise Pascal in the 17th century, he discovered many patterns, including some related to combinations and probability.

1	Row 0	$t_{0,0}$
1 1	Row 1	$t_{1,0}$ $t_{1,1}$
1 2 1	Row 2	$t_{2,0}$ $t_{2,1}$ $t_{2,2}$
1 3 3 1	Row 3	$t_{3,0}$ $t_{3,1}$ $t_{3,2}$ $t_{3,3}$
1 4 6 4 1	Row 4	$t_{4,0}$ $t_{4,1}$ $t_{4,2}$ $t_{4,3}$ $t_{4,4}$

Oct 2-6:47 PM

<u>Pascal's method</u> defines any term of the triangle as the sum of the two diagonal terms above it.

$$t_{n,r} + t_{n,r+1} = t_{n+1,r+1}$$

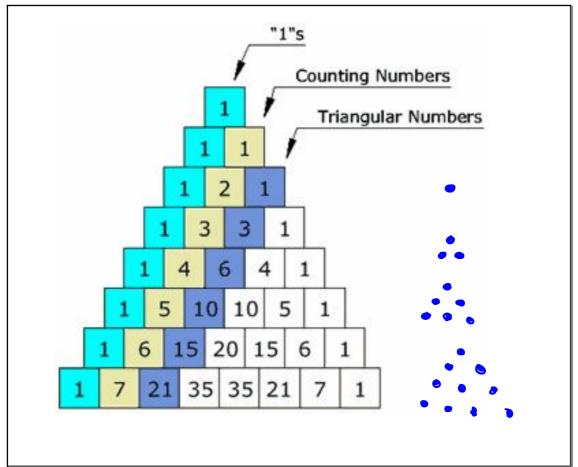
In practice, build the triangle starting at the top using an iterative process, one row at a time. Note the outer diagonals are always one.

$$t_{4,3} = t_{3,2} + t_{3,3}$$

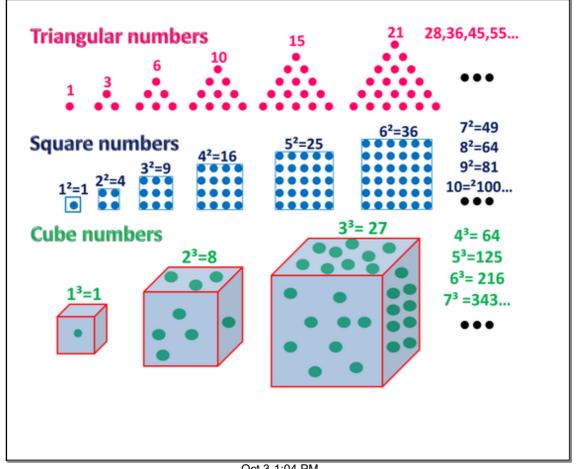
$$1 \quad 2 \quad 1$$

$$1 \quad 3 \quad 3 \quad 1$$

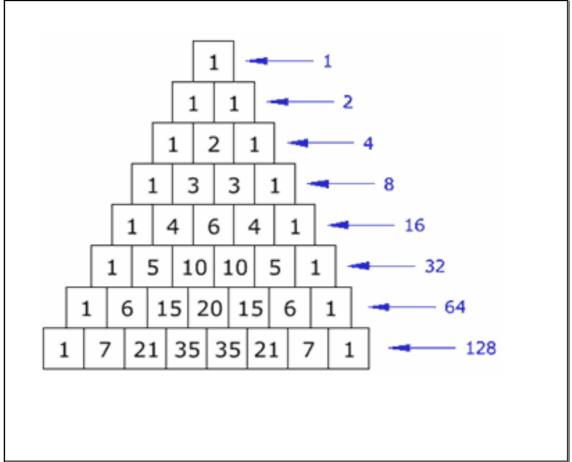
$$1 \quad 4 \quad 6 \quad 4 \quad 1$$



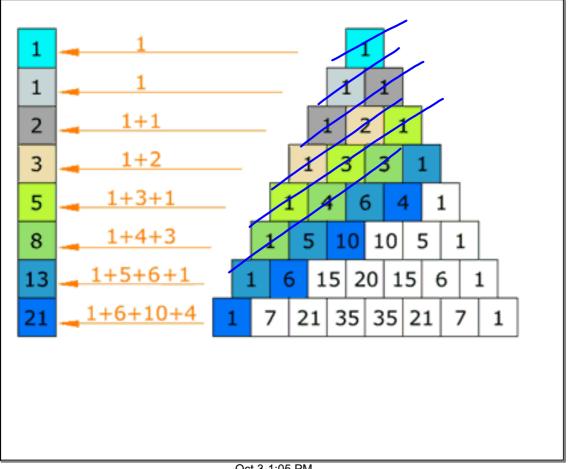
Oct 3-1:04 PM



Oct 3-1:04 PM



Oct 3-1:05 PM



Oct 3-1:05 PM

The elements of each row can also be related to combinations.

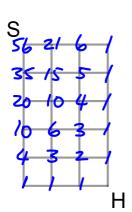
1	Row 0	$_{0}C_{0}$
1 1	Row 1	$_{1}C_{0}$ $_{1}C_{1}$
1 2 1	Row 2	${}_{2}C_{0}$ ${}_{2}C_{1}$ ${}_{2}C_{2}$
1 3 3 1	Row 3	$_{3}C_{0}$ $_{3}C_{1}$ $_{3}C_{2}$ $_{3}C_{3}$
1 4 6 4 1	Row 4	${}_{4}C_{0}$ ${}_{4}C_{1}$ ${}_{4}C_{2}$ ${}_{4}C_{3}$ ${}_{4}C_{4}$

Oct 2-6:47 PM

Ex. Use Pascal's method to determine how many paths spell "NOVEMBER", starting at the top and always moving down to the left or right.

Ex. School is 5 blocks north and 3 west from home. How many paths from home to school?

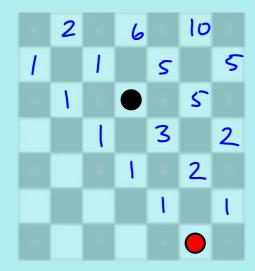
Note: We have done a similar problem using combinations. Assume all movement is towards school.



.: there are 56 paths directly from home to school.

Oct 2-10:00 PM

Ex. The red checker can only travel diagonally upward. How many paths to the top without crossing the black piece?



total = 18 ways

p.126 # 1, 2, 4, 8, 9, 10, 11

Oct 2-10:04 PM