Binomial Distributions

Oct 18/2018

A binomial distribution has a specified number of independent trials where there are only two possible outcomes, success or failure. The probability of a success is the same in each trial.

Recall: Pascal's triangle was connected to the Binomial Theorem, used to expand (p + q)ⁿ.

Ex. There is a 60% chance of the Ottawa Sentors winning any pre-season game. What is the probability of them winning four out of five games?

Oct 16-9:14 PM

Ex. There is a 60% chance of the Ottawa Sentors winning any pre-season game. What is the probability of them winning four out of five games?

(2) Pascal's triangle

Oct 16-9:14 PM

The probability of x successes in n identical <u>independent</u> trials is:

$$P(x) = {}_{n}C_{x}p^{x}q^{n-x}$$

n is the number of trials

x is the number of successes

p is the probability of success in a single trial

q is the probability of failure in a single trial

These are the same terms as the expansion of $(p + q)^n$.

Note: q = 1 - p, or p + q = 1.

Ex. During the regular season, the Ottawa Senators have a 55% chance of winning any individual game. What is the probability of winning <u>exactly</u> 5 of the next 10 games?

$$P(x) = {}_{N}C_{x} P^{x}Q^{N-x}$$

$$P = 0.55$$

$$Q = 1 - P$$

$$= 0.2340$$

$$N = 10$$

$$X = 5$$

$$P(x) = {}_{N}C_{x} P^{x}Q^{N-x}$$

$$= {}_{N}C_{x} (0.55)(0.45)$$

$$= 0.2340$$

$$= 23%$$

Oct 16-9:44 PM

Expected Value in a Binomial Distribution

Recall:
$$E(X) = \sum_{i=1}^{n} x_i P(i)$$

Expected Value in a Binomial Distribution

$$E(x) = np$$

where: n is the number of trials

p is the probability of success for one trial

Ex. A card is drawn at random from a regular deck and then replaced.

- (a) In 20 trials, what is the probability of 3 aces?
- (b) In 20 trials, how many aces are expected?

(a)
$$P_{ac2} = \frac{1}{13}$$
 $P(3aces) = {}_{20}C_{3}(\frac{1}{13})(\frac{12}{13})^{17}$
 $N = 20$
 $x = 3$ $= 13.3\%$
 $q = \frac{12}{13}$ $= 0.133$

(b)
$$E(x) = np$$

= $20(\frac{1}{13})$ aces in
= 1.54 20 draws.

Oct 16-9:33 PM

Assigned Work:

Feel free to use a spreadsheet for any questions

- 5. Prepare a probability table and a graph for a binomial distribution with
 - a) n = 6 and p = 0.3b) n = 8 and $p = \frac{1}{9}$ prob. of success

g events	per event $p = 0$. $q = 0$.
# Successes	brop
X	${}_{0}^{C_{x}}(p)^{x}(q)^{n-x}$ ${}_{0}^{C_{y}}(0.3)^{y}(0.7)^{z} = {}_{0}^{C_{y}}(0.3)^{y}(0.7)^{z}$
0	(Co(0.3)°(0.7) =
1	$(C_1(0.3)^1(0.7)^5 =$
3	
4	
5	
6	60, (0.3)6 (0.7) =

Oct 22-1:57 PM

- 8. Six people are asked to choose a number between 1 and 20. What is the probability that
 - a) two people choose the number 9?
 - b) at least two people choose the number 9?

let
$$A = a$$
 person chooses 9
 $P = \frac{1}{20}$ $q = \frac{19}{20}$ $N = 6$

(a)
$$P(z) = {C_2\left(\frac{1}{20}\right)^2\left(\frac{19}{20}\right)^4}$$

(b)
$$P(>2) = P(2) + P(3) + P(4) + P(5) + P(6)$$
direct method

$$P($$

$$P(\geqslant 2) = 1 - P(<2)$$

$$= 1 - \left(P(0) + P(1)\right)$$

$$= \left[-\frac{C_0\left(\frac{1}{20}\right)^0\left(\frac{19}{70}\right)^6 - C_1\left(\frac{1}{20}\right)^1\left(\frac{19}{20}\right)^6}{19}\right]$$

Oct 22-1:57 PM

- 17. Opinion polls based on small samples often yield misleading results. In a particular city, 65% of residents are opposed to a new light rail transit system.
 - a) If a poll were taken, calculate the probabilities of a majority of people approving the transit system with a sample of
 - 7 people
 - 100 people
 - 1000 people
 - b) Explain any differences in the results.

(a) 7 people
$$\frac{\text{Majority}}{4}$$

(b) $\frac{\text{E}(x)}{501} = np$
 $\frac{\text{E}(x)}{500} = 4.75$
 $\frac{\text{E}(x)}{500} = 650$
(a) $\frac{\text{E}(x)}{500} = 650$

Oct 22-1:57 PM