<u>Transformations of Trigonometric Functions</u>

In general: y = af[k(x-p)] + q

For trigonometric functions, this becomes

$$y = a \sin[k(x-p)] + q$$
or
$$y = a \cos[k(x-p)] + q$$
or
$$y = a \tan[k(x-p)] + q$$

May 17-9:17 AM

(1) Graphing From Key Points

For sine and cosine, use points from the x- and y-axes on the unit circle.

$$\theta \in \left\{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\right\}$$

For tangent, use a cycle between two vertical asymptotes:

$$\theta \in \left\{ \frac{-\pi}{2}, \frac{-\pi}{4}, 0, \frac{\pi}{4}, \frac{\pi}{2} \right\}$$

Transform each point:

$$(x,y) \rightarrow \left(\frac{x}{k} + p, ay + q\right)$$

(2) Graphing From Key Properties

- a vertical reflection and amplitude
- k horizontal reflection and period

sine and cosine:
$$\operatorname{period} = \frac{2\pi}{k}$$
 csc, sec
$$\operatorname{tangent:} \operatorname{period} = \frac{\pi}{k}$$
 cot

tangent:
$$period = \frac{\pi}{k}$$

- p phase shift of starting point (from x = 0)
- q axis of the curve, y = q

May 17-9:18 AM

(3) Determining Equations of Transformed Functions

- 1. Select parent function (sine or cosine, tangent).
- 2. Identify key properties of period and axis of the curve and use them to determine k and q
- line through middle se shift and fiel 3. Identify key properties of amplitude and phase shift and use them to determine a and p.
- 4. Write the equation, remembering that multiple answers may correctly represent the same graph.

Assigned Work:

p.343 # 1bd, 3, 4, 5, 8ade, 9, 11, 12, 14

May 22-8:28 AM

