Measures of Spread - Standard Deviation & z-scores 19/2018

Deviation is the distance from the mean to a specific data point.

Variance is a measure of spread based on the squares of all deviations from a sample or population of data.

Standard Deviation is the square root of variance.

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$$
 $\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$

S.D. for sample

S.D. for population

Nov 18-2:19 PM

The z-score describes the deviation from the mean for a single data point as a multiple of standard deviations.

$$z = \frac{x_i - \bar{x}}{\sigma} \qquad \qquad z = \frac{x_i - \mu}{\sigma}$$

sample

population

Steps for calculating standard deviation:

- (1) list data
- (2) count data
- (3) sum data
- (4) calculate mean
- (5) calculate deviations
- (6) square deviations
- (7) sum squared deviations
- (8) divide by N or (n-1) to get variance
- (9) square root of variance
- (10) Z-scores

Nov 18-2:29 PM

Ex. Calculate the standard deviation and z-scores for this			
sample d	ala.	6	6
$\begin{bmatrix} \mathcal{O} \\ x_i \end{bmatrix}$	$x_i - \bar{x}$	$(x_i - \bar{x})^2$	$z = \frac{\overline{x_i} - \overline{x}}{\sigma}$
9	9-13.6=-4.6	21.16	-0.474
14	6.4	طا .0	0.041
30	16.4	268.96	1.689
5	-8.6	73.96	– ১ ∙ ৫ ४
16	-3.6	12.96	- 0.370
$3n = 5$ $\bar{w} \ \bar{x} = 13.6$ $\sigma^2 = \frac{377.2}{4}$			
$3\sum_{i=6}^{3} x_{i} \sum_{j=3}^{3} (x_{i} - \bar{x})^{2} = 94.3$ $0 \sigma = 9.7$			
=68 = 377.2 $0 = 9.7$			
(

p.286 # 1 - 3, 4a, 6, 8, 9, 15

Nov 18-7:45 PM