Dynamic Analysis of Two-Variable Data

Dec 18/2018

The simplest relationship between two variables is<u>linear</u>, which allows us to easily determine a<u>line of best fit</u> and <u>correlation coefficient</u>. There are also more complex relationships, such as quadratic, exponential, and sinusoidal.

With any statistical analysis, it is necessary to examine the data carefully, starting with the correct model. Once a model is selected, we also look for other factors, such as:

- (1) Outlier: A point that does not follow the trend of the data.
- (2) Hidden Variable: Affects or obscures the relationship between two variables, resulting in a false correlation.

Dec 17-7:20 PM

A <u>residual plot</u> can be useful in spotting potential outliers.

x	у	y_LOBF	y_residual
1	15	4=3.5(1)+11.7=15.2	15-15.2 =-02
2	18	y=3.5(1)+11.7=15.2 y=3.5(2)+11.7=18.7	18-18.7 = -0.7
3	23	22.2	0.8
4	27	25.7	1.3
5	28	29.2	-1.2
5	20	2112	, _

$$y_{\text{LOBF}} = mx + b$$
 $y_{\text{residual}} = y - y_{\text{LOBF}}$

$$m=3.5$$
 "=slope(dataY,dataX)"

$$b = 11.7$$
 "=intercept(dataY,dataX)"

X	у	y LOBF	y residual	
120	200	193.8533812	6.146618772	
144	175	182.9695911	-7.96959106	
160	190	175.7137309	14.28626905	
175	156	168.9113621	-12.91136209	
200	142	157.5740807	-15.57408067	
210	167	153.0391681	13.9608319	
224	140	146.6902905	-6.690290498	
236	150	141.2483954	8.751604587	
use y = mx+b and x-values to calculate $y_{\rm residual} = y - y_{\rm LOE}$				

Dec 18-9:34 AM

There is no clear pattern in the residual plot. Points are randomly located above and below the horizontal axis. This indicates that we probably have a good linear model.

Assigned Work:

read p.406 - 412

- example with outlier
- example with hidden variable

p.413 # 1 - 3, 4 - 6 (spreadsheet)

Dec 18-9:44 AM