Unit 7: Combinations of Functions

Sums & Differences of Functions

Dec 20/2018

Sum:

$$h(x) = f(x) + g(x)$$

$$(f+g)(x) = f(x) + g(x)$$

"f plus g of x"

Difference:

$$(f-g)(x) = f(x) - g(x)$$

"f minus g of x"

To graph, pick an x-value and determine y-values for each function, then add or subtract the y-values.

Algebraically, combine the two functions, simplifying where possible.

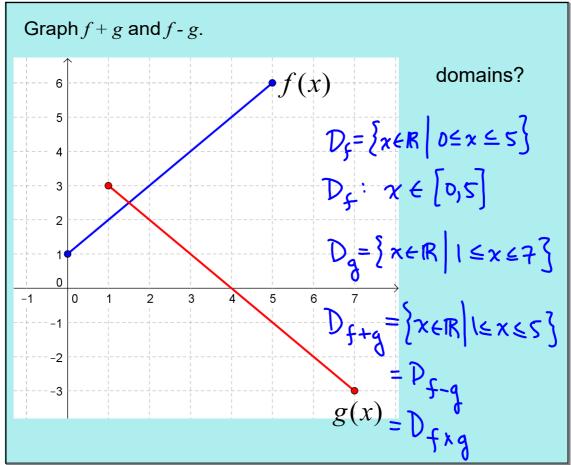
Jan 5-8:11 PM

Functions can only be combined for x-values which are valid for <u>both</u> functions. This is where the <u>domains</u> of both functions overlap, which is called the <u>intersection</u> of the domains.

$$D_{f+g} = D_f \cap D_g$$

intersection

Ex.1 Given
$$f = \{(1,3),(2,-5),(3,7)\}$$


$$g = \{(2,-2),(3,3),(4,1)\}$$

- (a) determine the domain of each function.
- (b) determine the domain of f + g.
- (c) determine f + g.

(a)
$$D^{\ell} = \{1, 5, 3\}$$
 $D^{\ell} = \{5, 3, 4\}$

(b)
$$D_{f+g} = \{2,3\}$$

(c)
$$f+q=\{(2,-7),(3,10)\}$$

Jan 6-2:10 PM

Ex.2 Given
$$D_f = \{x \in \mathbb{R} \mid x > 0\}$$

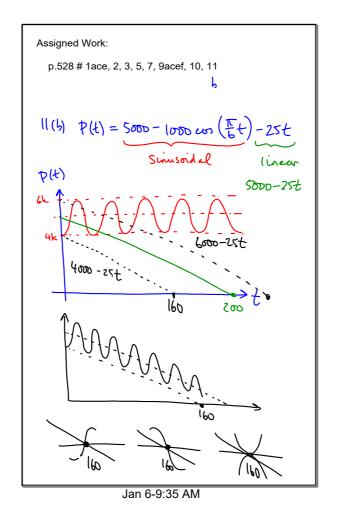
$$D_g = \{x \in \mathbb{R} \mid x \leq 5\}$$

- (a) represent each domain on a number line.
- (b) represent the domain of f g on the same line.

$$\begin{array}{c} D_f & \longleftrightarrow & \longleftrightarrow & \longleftrightarrow & \longleftrightarrow \\ D_g & \longleftrightarrow & \longleftrightarrow & \longleftrightarrow & \longleftrightarrow \\ D_{f-g} & \longleftrightarrow & \longleftrightarrow & \longleftrightarrow & \longleftrightarrow & \longleftrightarrow \\ \end{array}$$

(c) represent the domain of f - g using set notation.

$$D_{f-g} = \{x \in \mathbb{R} \mid 0 < x \leq 5\}$$


Recall:

- (1) An <u>even function</u> has reflective symmetry with respect to the y-axis.
- (2) An <u>odd function</u> has rotational symmetry with respect to the origin.

$$f(x) = f(-x)$$

$$f(x) = -f(-x)$$
 or
$$-f(x) = f(-x)$$

Jan 6-10:53 AM

