Fub 6/2019

MCR3U: Review of MPM2D

Factoring Quadratic Relations

Jan 31-2:27 PM

* always look for common factors first!

Look for the <u>greatest common factor</u> of the coefficients and the <u>GCF</u> of the variables.

Ex. Factor:
$$8x^3 - 6x^2y^2 + 4x^2y$$

The GCF of 8, 6, and 4 is _____.

The GCF o(x^3) x^2y^2 , and x^2y is _____.

 $x^2y^2 + 4x^2y$

= $2x^2$ ($\frac{8x^3 - 6x^2y^2 + 4x^2y}{2x^2}$)

= $2x^2$ ($\frac{8x^3 - 6x^2y^2 + 4x^2y}{2x^2}$)

 $= 2x^2$ ($\frac{8x^3 - 6x^2y^2 + 4x^2y}{2x^2}$)

 $= 2x^2$ ($\frac{8x^3 - 6x^2y^2 + 4x^2y}{2x^2}$)

Mar 26-8:24 AM

2. Common Factors by Grouping

Some polynomials do not have common factors in all terms. They can <u>sometimes</u> be factored by <u>grouping</u> terms with common factors.

factors.

Ex. Factor:
$$ac + bc + ad + bd$$

$$= c(a+b) + d(a+b)$$

$$= cq + dq$$

$$= q(c+d)$$

$$= (a+b)(c+d)$$

Mar 26-8:24 AM

- 3. Factoring Trinomials $(ax^2 + bx + c)$
- (a) Using Alge-tiles, or an Area Model

Model the expression as an <u>area</u>. The tiles must form a rectangle (or square). The lengths of the sides are factors.

(b) Algebraically

What is the relationship between the coefficients of each term in the expression? Use this information to <u>decompose</u> the middle term into two pieces, then factor by grouping.

Mar 26-8:24 AM

Ex. Factor
$$3x^2 + 7x + 2$$
 algebraically
$$M: 3x^2 = 6$$

$$3x^2 + x + 6x + 2$$

$$= x(3x+1) + 2(3x+1)$$

$$= (3x+1)(x+2)$$

$$M: 3x^2 = 6$$

$$A: 7$$

$$N: 1, 6$$

Feb 1-7:13 PM

4. Factoring Special Quadratics (by patterns)

Perfect Squares:
$$a^2 + 2ab + b^2 = (a+b)^2$$

 $a^2 - 2ab + b^2 = (a-b)^2$
Difference of Squares: $a^2 - b^2 = (a-b)(a+b)$

(a)
$$25d^{2} - 144$$

$$= (5d)^{2} - (12)^{2}$$

$$= (5d - 12)(5d + 12)$$
(b) $16x^{2} + 24xy + 9y^{2}$

$$= (4x)^{2} + 24xy + (3y)^{2}$$

$$= (4x + 3y)^{2}$$
(c) $18p^{2}q - 60pq + 50q$

$$= 2q(9p^{2} - 30p + 25)$$

$$= 2(4qa^{2} - 1bb^{2})$$

$$= 2(4qa^{2} - 1bb^{2})$$

$$= 2(4qa^{2} - 1bb^{2})$$

$$= 2(4qa^{2} - 1bb^{2})$$

Feb 2-6:44 PM

Feb 1-7:30 PM

Feb 7-12:44 PM