Intersection of Quadratics & Lines

(more solving quadratic equations)

Recall from last class:

Consider $y = x^2 + 6x$, and solve for y = -8.

In this example, we were actually solving for the intersection between the parabola and the horizontal straight line.

Solutions: (-4, -8) and (-2, -8)

Intersection of Quadratics & Lines

(more solving quadratic equations)

Consider $y = x^2 + 6x$, and solve for x = -2.

In this example, we solve for the intersection between the parabola and the vertical straight line.

Solution: (-2, -8)

x y

Intersection of Quadratics & Lines

(more solving quadratic equations)

Consider $y = x^2 + 6x$, and solve for y = x - 4.

In this example, we solve for the intersection between the parabola and the given straight line.

Solutions: (-4, -8) and (-1, -5)

Intersection of Quadratics & Lines

(more solving quadratic equations)

A linear-quadratic system will have zero, one, or two solutions.

No Solution

One Solution (tangent line)

Two Solutions (secant line)

P(x,y)

Recall: To <u>solve</u> an equation is to find the value(s) for the variables that satisfy the equation (i.e., make it true)

Given a quadratic relation, $y = Ax^2 + Bx + C$

and a linear relation, y = mx + k

the solution will be the point(s) where the parabola and straight line intersect.

$$y = Ax^2 + Bx + C$$
 (1) $y = mx + k$ (2)

Solve the <u>system of equations</u> using the fact that y = y

$$y = y$$

$$Ax^{2} + Bx + C = mx + k$$

$$\vdots$$

$$ax^{2} + bx + c = 0$$

$$GQF$$
?

Sub the x-values from the solution(s) into <u>either</u> original relation to find the corresponding y-values.

Ex.2 Determine the equation(s) of the lines that have slope of 2 that intersect
$$y = x(6-x)$$

(a) once
(b) twice
(c) never

$$x(6-x) = 2x + k$$

$$x(6-x) = 2x + k$$

$$6x - x^2 = 2x + k$$

$$0 = x^2 - 4x + k$$

$$x^2 + bx + c$$

$$y = 2x + k$$

$$x^2 + bx + c$$

$$y = 2x + k$$

$$x^2 + bx + c$$

$$x^2$$

Assigned Work:	
worksheet	