Families of Quadratic Relations

A group of quadratic relations which all share a common characteristic is called a family of quadratics.

The most common characteristics of interest are:

1. Zeroes
2. Vertex
3. y-intercept
same zeroes
$y=3(x-2)(x+5)$
$y=-(x+5)(x-2)$
$y=x^{2}+3 x-10$
$=(x+5)(x-2)$
Note: The equations may not be in the same form.

Family of Quadratics - Same Zeroes

Title: Feb 22-7:56 PM (Page 2 of 9)

Family of Quadratics - Same Vertex

Title: Feb 22-7:56 PM (Page 3 of 9)

Family of Quadratics - Same y-intercept

Title: Feb 22-7:56 PM (Page 4 of 9)

Ex. Determine the family of quadratics common to:

$$
\begin{aligned}
& y=-(x-6)(x+2) \longrightarrow \text { zeroes } \\
& y=3(x-2)^{2}+16 \longrightarrow \text { vertex } \\
& y=-2 x^{2}+8 x+8 \quad \longrightarrow y \text {-intercept }
\end{aligned}
$$

How can we test for the same vertex, zeroes, y-int?

What is the easiest place to start?

Ex. Determine the family of quadratics common to:

$$
\begin{align*}
& y=(-(x-6)(x+2) \tag{A}\\
& y=3(x-2)^{2}+16 \tag{B}\\
& y=-2 x^{2}+8 x+8 \tag{c}
\end{align*}
$$

(C) y-int at $(0,8)$
(B) Sat $x=0$
(A)

$$
=12+16
$$

$$
\begin{aligned}
y & =-1(0-6)(0+2) \\
& =12 x
\end{aligned}
$$

$$
=28 \times
$$

\therefore not a family of y-int
(A) $(6,0)(-2,0)$
test (B) $\operatorname{sub} x=6 \quad$ sub $x=-2$

$$
\begin{aligned}
y & =3(x-2)^{2}+16 \\
& =3(6-2)^{2}+16 \\
& =48+16 \\
& =64 \times
\end{aligned}
$$

$$
=48+16 \quad \therefore \text { not common zeroes. }
$$

(B) $\begin{gathered}V(2,16) \\ x y\end{gathered}$
(A)

$$
\begin{aligned}
y & =-(x-6)(x+2) \\
& =-(2-6)(2+2) \\
& =-(-4)(4) \\
& =16
\end{aligned}
$$

(c)

$$
\begin{aligned}
y & =-2 x^{2}+8 x+8 \\
& =-2(2)^{2}+8(2)+8 \\
& =-8+16+8 \\
& =16
\end{aligned}
$$

\therefore it is a family with common vertex.
Title : Feb 19-9:50 PM (Page 7 of 9)

$$
\begin{aligned}
& \text { Ex. Determine the equation of the quadratic relation, } \\
& \text { in standard form, that has rootsloff } \sqrt{5} \text { and }-\sqrt{5} \\
& \text { and passes through: } \\
& \left.\begin{array}{l}
\text { (a) }(2,5) \\
\text { (b) }(2,10)
\end{array}\right\} \text { famely of roots/zeroes } \\
& y=a(x-s)(x-t) \\
& \begin{array}{l}
y=a(x-5)(x-t) \\
y=a(x-(1+\sqrt{5})(x-(1-\sqrt{5}))
\end{array} \\
& y=a(\underbrace{x-1}_{(p-q}-\underbrace{\sqrt{5}})(\underbrace{x-1}+\underbrace{\sqrt{5}}) \\
& y=a\left(p^{2}-q^{2}\right) \\
& y=a\left((x-1)^{2}-(\sqrt{5})^{2}\right) \\
& y=a\left(x^{2}-2 x+1-5\right) \\
& y=\frac{a}{\frac{a}{3}}\left(x^{2}-2 x-4\right) \\
& \text { (a) } P(2,5) \\
& 5=a\left(2^{2}-2(2)-4\right) \\
& 5=a(4-4-4) \\
& 5=-4 a \\
& a=-\frac{5}{4} \\
& \begin{array}{l}
y=\frac{-5}{4}\left(x^{2}-2 x-4\right) \\
y=\frac{-5}{4} x^{2}+\frac{5(x x)}{x_{2}}+\frac{5(4)}{4_{1}} \\
y=\frac{-5}{4} x^{2}+\frac{5 x}{2}+5
\end{array} \\
& \text { (b) } p(2,10) \\
& y=a\left(x^{2}-2 x-4\right) \\
& 10=a(4-4-4) \\
& 10=-4 a \\
& a=-\frac{10}{4} \\
& a=-\frac{5}{2} \\
& y=-\frac{5}{2}\left(x^{2}-2 x-4\right) \\
& y=-\frac{5}{2} x^{2}+5 x+10
\end{aligned}
$$

Title : Feb 12-9:16 PM (Page 8 of 9)

Assigned Work:

worksheet

Title : Feb 10-10:23 PM (Page 9 of 9)

