

1. The Radical Function

Consider the relation $y=\sqrt{x}$

x	y
$x-4$	$\sqrt{-4}$ DUE
$x-1$	$\sqrt{-1}$ DIE
$/ 0$	$\sqrt{0}=0$
$\checkmark 1$	$\sqrt{1}=1$
$\checkmark 4$	$\sqrt{4}=2$
$/ 9$	$\sqrt{9}=3$

Domain: $\quad\{x \in \mathbb{R} \mid x \geqslant 0\}$
Range: $\quad\{y \in \mathbb{R} \mid y \geqslant 0\}$
$\underset{y}{\max / \min ?} \min , y=0$

The radical function, $f(x)=\sqrt{x}$

$D=\{x \in \mathbb{R} \mid x \geq 0\} \quad R=\{y \in \mathbb{R} \mid y \geq 0\}$

Title : Feb 22-9:49 PM (Page 3 of 10)

The reciprocal function, $f(x)=\frac{1}{x}$

$D=\{x \in \mathbb{R} \mid x \neq 0\} \quad R=\{y \in \mathbb{R} \mid y \neq 0\}$

Consider $f(x)=|x|$

Domain: $\quad\{x \in \mathbb{R}\}$
Range: $\quad\{y \in \mathbb{R} \mid y \geqslant 0\}$
$\max \min$? min at $y=0$
asymptotes?
none

The absolute value function, $f(x)=|x|$

$D=\{x \in \mathbb{R}\}$
$R=\{y \in \mathbb{R} \mid y \geq 0\}$

Asymptotes

A line that a curve approaches, but never touches, is called an asymptote . The reciprocal function has two asymptotes:

$$
\begin{array}{ll}
\text { Vertical Asymptote (VA): } & x=0 \\
\text { Horizontal Asymptote (HA): } & y=0
\end{array}
$$

Note how these asymptotes correspond to the restrictions on the domain and range of the function.

$$
\begin{aligned}
& D=\{x \in \mathbb{R} \mid x \neq 0\} \\
& R=\{y \in \mathbb{R} \mid y \neq 0\}
\end{aligned}
$$

Absolute Value Function

Sometimes, we are only concerned with the size of a value, rather than the sign (positive or negative).

This is called the magnitude of the value.

To represent this concept algebraically, we make use of the absolute value notation:

$$
y=|x| \quad \text { or } \quad f(x)=|x|
$$

The result will always be positive.

Assigned Work:

Worksheet: Function Notation

