Transformations of Functions

Recall: In Gr.10, we explored transformations of a quadratic relation. For consistency, we use vertex form.

$$
y=\underline{\underline{a}}(x-h)^{2}+k
$$

What are the possible transformations? (read from left to right)
(1) a: v. reflection?
$\begin{aligned} & \text { vertical scaling } \text { stretch } \\ & \text { compression }\end{aligned}$
(2) $h: x_{\text {veter }}$ horizontal shift left/right
(3) k: yvertox vertical shift up/dwn

$$
y=\underset{182}{a}(x-h)^{2}+k
$$

Summary of possible transformations (in order):

1. Vertical Reflection: $a<0$
2. Vertical Scaling (stretch or compress):

- stretch when $a<-1$ or $a>1$ (or $|a|>1$)
- parabola is thinner
- compress when $-1<a<1$ (or $|\mathrm{a}|<1$) stretch.
- parabola is wider

3. Horizontal Translation (shift left or right) by h
4. Vertical Translation (shift up or down) by k

Using function notation,

$$
\begin{gathered}
y=x^{2} \quad \text { becomes } y=f(x) \\
y \text { sq }(x-h)^{2}+k \quad \text { becomes } y=a f(x-h)+k
\end{gathered}
$$

The transformations produced by a, h, and k can be applied to any function.

$$
\text { Start with: } \begin{aligned}
f(x) & =x^{2} \quad[x a] \\
a f(x) & =a x^{2} \\
a f(x-h) & =a(x-h)^{2} \\
a f(x-h)+k & =a(x-h)^{2}+k
\end{aligned}
$$

Ex. 1 State the transformations, in the correct order,

$$
y=\operatorname{trg}(t x) \quad \text { has undergone to obtain } y=f(x+1)+3
$$

(1) h. shift left by 1
(2) v. shift up by 3

Using the previous example, what if the parent function is a quadratic? Then $(x)=x^{2}$.

Sketch the transformed parabola on the grid below.
(Use a table of values if you want to)

$$
y=f(x+1)+3
$$

(1) Left 1
(2) $\operatorname{up} 3$

What if the parent function is a set of ordered pairs?

$$
f(1 x)=\{\underset{x}{(1,} \underset{y}{2}), \underset{x}{(2,} \underset{y}{-3}), \underset{x}{-(-5,7} \underset{y}{7})\}
$$

what would $f(x+1)+3$ become?
(Use a table of values and/or graph if you want to!)
(1) Left by 1 (x)
(2) up lng $3 \quad(y)$

$$
\begin{aligned}
(1,2) & \xrightarrow{(1)}(0,2) \xrightarrow{(2)}(0,5) \\
(2-3) & \rightarrow(1,-3) \rightarrow(1,0) \\
(-5,7) & \rightarrow(-6,7) \rightarrow(-6,10) \\
f(x+1)+3 & =\{(0,5),(1,0),(-6,10)\}
\end{aligned}
$$

What if the parent function is the square root function?
The rf $(x)=\sqrt{x}$ What would $f(x+1)+3$ become?
Use a table of values if you want to)
$(0,0) \rightarrow(-1,3)$
$(1,1) \rightarrow(0,4)$
$(4,2) \longrightarrow(3,5)$
$(9,3) \rightarrow(8,6)$

$$
y E x: 2 \text { fin }(v e r)+3
$$

describe the transformations and apply them to the square root function.
(Use a table of values and/or graph if you want to!)

$$
y=2 f(x)+3
$$

(1) $a=2$
v. stretch by 2

$$
y \times 2
$$

(2) V. shift by 3

$$
y+3
$$

$$
(0,0) \rightarrow(0,0) \rightarrow(0,3)
$$

$$
(1,1) \rightarrow(1,2) \rightarrow(1,5)
$$

Title : Mar 2-6:17 AM (Page 9 of 14)

describe the transformations and apply them to the reciprocal function.

$$
y=0.4 f(x-1)
$$

(1): V. scaling by 0.4

$$
y \times \frac{2}{5}
$$

(c)
v. compress by $\frac{5}{2}(>1)$ $y \div \frac{5}{2}$
v. compress by $\frac{2}{5}$ $y \times \frac{2}{5}$

$$
\begin{aligned}
& \begin{array}{l}
V A: x=0 \longrightarrow x=0 \longrightarrow x=1 \\
H A: y=0 \longrightarrow y=0 \longrightarrow y=0
\end{array} \\
& (1,1) \rightarrow\left(1, \frac{2}{5}\right) \rightarrow\left(2, \frac{2}{5}\right) \\
& \text { (} 2,0.4 \text {) } \\
& (-1,-1) \rightarrow\left(-1,-\frac{2}{5}\right) \rightarrow(0,-0.4)
\end{aligned}
$$

(2) right by 1

Title : Mar 2-6:18 AM (Page 10 of 14)

Ex: The graph on the right shows the function $=f(x)$.

$$
y=-f(\text { Xx і世बा })-2
$$ describe the transformations and apply them to the function

 $(-4,1) \quad(-2,0)$

$$
(2,8) \rightarrow(2,-8) \rightarrow(1,-8) \rightarrow(1,-10)
$$

$$
(-5,1) \quad(-3,0)
$$

$$
(4,8) \rightarrow(4,-8) \rightarrow(3,-8) \rightarrow(3,-10)
$$

Ex: The graph on the right shows the function $y=f(x)$ $y=2$ Gi($(\underset{x}{ })-1$, describe the transformations and apply them to the function.v. stretch by 2

$$
y \times 2
$$

(2) down by 1 .

$$
\begin{aligned}
& x_{2}=x_{1} \\
& y_{2}=2 y_{1}-1
\end{aligned}
$$

Ex: The graph on the right shows the function $(x)=\sqrt{16-x^{2}}$

$$
y=-0.59 i(9 x+2)
$$, describe the transformations and apply them to the function.

(Use a table of values with the key points, if you want to!)
(1) V.reflect
(2) V.compress by 2 $y \div 2$ or $y \times 0.5$
(3) h. shift left by 2

$$
\begin{aligned}
& (-4,0) \rightarrow(-4,0) \rightarrow(-4,0) \rightarrow(-6,0) \\
& (0,4) \rightarrow(0,-4) \rightarrow(0,-2) \rightarrow(-2,-2) \\
& (4,0) \rightarrow(4,0) \rightarrow(4,0) \rightarrow(2,0)
\end{aligned}
$$

Assigned Work:

p. 241 \# 8b, 9b, 5abd, 4abce

