Determining Transformed Functions from Graphs

Tips for parabolas: $y=a(x-p)^{2}+q \quad{ }_{\downarrow} y=x^{2}$

1. The vertex of the parent function is at $(0,0)$. The value zero is not affected by scaling (a or k), only translations (p or q). The vertex will be at (p, q).
2. Parabolas can ignore the horizontal scaling,
k, because
there is an equivalent 'a' value.

$$
y=x^{2}
$$

3. Use the step pattern $(1,3,5, \ldots)$ from the
 vertex to determine the vertical scaling, ' a '.

Ex. 1 Determine the transformation shown and express in function notation.

$$
\begin{aligned}
& (0,0) \rightarrow(-4,3) \\
& p=-4 \quad q=3 \\
& \text { assume } k=1 \\
& a<0 \\
& \text { step } \\
& \{(1) 3,5\} \rightarrow\left\{(-2), \frac{-6}{?}, \frac{-10}{?}\right\} \\
& y=x^{2} \\
& a=1 \\
& y=-2(x+4)^{2}+3 \\
& \text { OR } \\
& y=-2 f(x+4)+3, f(x)=x^{2}
\end{aligned}
$$

Tips for radicals: $\quad y=a \sqrt{k(x-p)}+q$

1. The parent function starts at $(0,0)$, just like a parabola. The value zero is not affected by scaling (a or k), only translations (p or q).
2. The sign of ' a ' and ' k ' are both important for reflections.
3. Use one of is more likely to give a "nice" (integer) value.

Ex. 2 Determine the transformations shown and express in function notation.

$$
\begin{gathered}
(0,0) \rightarrow(-2,-3) \\
\downarrow \quad \downarrow \\
p=-2 \quad q=-3
\end{gathered}
$$

h. stratchad by 4

$$
\begin{aligned}
& x \rightarrow \frac{x}{k} \quad k=\frac{1}{4} \\
& k>0 \quad a>0
\end{aligned}
$$

no reflections

$$
\begin{aligned}
& y=\sqrt{\frac{1}{4}(x+2)}-3 \\
& \text { or } \\
& y=f\left[\frac{1}{4}(x+2)\right]-3, \quad f(x)=\sqrt{x}
\end{aligned}
$$

Ex. 3 Determine the transformations shown and express in function notation.

$$
\begin{array}{rl}
(0,0) & \rightarrow(3,1) \\
p=3 & q=1 \\
h & \text { reflect: }
\end{array}
$$

h. compress by $4[\div 4]$

$$
\begin{gathered}
k=-4 \\
y=\sqrt{-4(x-3)}+1 \\
\text { or } \\
y=f[-4(x-3)]+1, \quad f(x)=\sqrt{x}
\end{gathered}
$$

$$
\text { Tips for rationals: } y=\frac{a}{k(x-p)}+q \quad y=\frac{1}{x}
$$

1. The parent function has asymptotes at $\mathrm{x}=0$ and $\mathrm{y}=0$.

The new asymptotes will be at $\mathrm{x}=\mathrm{p}$ and $\mathrm{y}=\mathrm{q} . \quad H \mathrm{~A}$
2. Use only one of 'a' or ' k ' for scaling and reflection.

$$
y=\frac{1}{3(x-2)} \Leftrightarrow y=\frac{1}{3} \times \frac{1}{x-2}
$$

Ex. 4 Determine the transformations shown and express in function notation.

$$
\begin{aligned}
& x=0 \rightarrow x=-3 \\
& \downarrow \\
& p=-3 \\
& y=0 \rightarrow y= 5 \\
& \downarrow \\
& q=5
\end{aligned}
$$

(1) $P_{1} \rightarrow P_{2}$
h. step of $1 \rightarrow$ h. step of 3 h. stretch of 3

$$
k=\frac{1}{3}
$$

$$
x=-3
$$

$$
\begin{aligned}
& k=\frac{1}{3} \\
& y=1 f\left[\frac{1}{3}(x+3)\right]+5, x(x)=\frac{1}{x}
\end{aligned}
$$

$$
=\frac{1}{\frac{1}{3}(x+3)}+5
$$

$$
\frac{1}{\frac{1}{3}}=\frac{1}{1} \times \frac{3}{1}
$$

$$
=3
$$

$$
y=\frac{3}{x+3}+5
$$

(2) $P_{1} \rightarrow P_{3}$

$$
\begin{aligned}
y & =3 f[1(x+3)]+5 \\
& =\frac{3}{1}\left(\frac{1}{x+3}\right)+5 \\
y & =\frac{3}{x+3}+5
\end{aligned}
$$

V. stretch by 3

$$
a=3
$$

Ex. 5 Determine the transformations shown and express in function notation.

$$
\begin{aligned}
& p=3 \quad q=-2 \\
& a<0 \text { or } k<0
\end{aligned}
$$

h. stretch hoy 4

$$
k=-\frac{1}{4}
$$

v. stretch by 4

$$
\begin{equation*}
a=-4 \tag{or}
\end{equation*}
$$

h. strath ing 2 AND v. stretch he 2

$$
k=-\frac{1}{2}
$$

$$
a=2 \quad \begin{aligned}
& y=-4 f(x-3)-2 \\
& y
\end{aligned}=\frac{-4}{x-3}-2
$$

Tips for unknown functions, or collections of points:

1. Look for zeroes, since they are only affected by horizontal and vertical shifts. $\quad(0,3) \rightarrow(p, ?)$

$$
(0,0) \rightarrow(p, q)
$$

$(7,0) \rightarrow(?, q)$
2. Consider the overall size (i.e., a box) of the graph, or a specific set of points on the graph to determine any stretches.
3. A pattern in the movement of points should show any reflections.
4. If all else fails, create up to four equations and solve for the four unknowns using-four points.

$$
(x, y) \rightarrow\left(\frac{x}{k}+p, a y+q\right)
$$

Title: Mar 2-7:13 AM (Page 10 of 10)

