Inverse of a Function

Recall: A relation is a set of ordered pairs.

The inverse of a relation can be found by interchanging the domain and range of the relation.

In other words, swap the x - and y-values for each point.

$f(x)$

Title : Feb 22-9:25 PM (Page 1 of 10)

Title : Feb 22-8:37 PM (Page 2 of 10)

Graphically, swapping the x - and y-values is equivalent to reflecting the relation across the line $y=x$.

Ex. 2 Find the inverse of $y=1(x+5)^{2}-2 \quad$ graphically.

Title : Feb 22-10:16 PM (Page 3 of 10)

Find the inverse of $y=(x+5)^{2}-2 \quad$ graphically

Notice that the original points and the reflected (swapped) points are equidistant (equal distance)
to the line $y=x$.

The inverse (red
) fails the vertical line test, and
is
not
a function.

Title : Feb 23-9:20 PM (Page 4 of 10)

Recall: A function is a special type of relation where each element in the domain corresponds to a single value in the range.

For an inverse function , each value in the range

Note: In the inverse notation, the " -1 " is not an exponent!

For example:

$$
x^{-1}=\frac{1}{x}
$$

$$
f^{-1}(x) \neq \frac{1}{f(x)}
$$

Algebraically, swap the x - and y-variables, then rearrange the new equation for y.

If the original equation is in function notation, first change the function to y.

$$
y=f(x)
$$

Ex. 3 Find the inverse of $f(x)=4 x+3$

$$
y=4 x+3
$$

for inverse, swap x, y

$$
x=4 y+3
$$

$$
\frac{x-3}{4}=\frac{4 y}{4}
$$

$$
y=\frac{x-3}{4}
$$

$$
\begin{gathered}
y=\frac{x}{4}-\frac{3}{4} \\
\text { or } \\
y=\frac{1}{4} x-\frac{3}{4} \\
y=m x+b \\
f^{-1}(x)=\frac{1}{4} x-\frac{3}{4}
\end{gathered}
$$

$$
y=\frac{1}{4} x-\frac{3}{4} \quad \text { is a function }
$$

A function and its inverse undo each other. From the previous example,

Ex. 4 For each value, determine $=f(x)$,
then sub the y-value into $f^{-1}(x)$.
(a) $x=5$
(b) $x=-3$
(c) $x=2.5$
$f(5)=4(5)+3$
$f(-3)=4(-3)+3$

$$
f(2.5)=4(2.5)+3
$$

$$
=23
$$

$$
=-12+3
$$

$$
=10+3
$$

$$
f^{-1}(23)=\frac{23-3}{4}
$$

$$
=13
$$

$$
=-9
$$

$=\frac{20}{4} \quad f^{\prime \prime}(-9)=\frac{-9-3}{4}$

$$
\begin{aligned}
& =\frac{-12}{4} \\
& =-3
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{10}{4} \\
& =2.5
\end{aligned}
$$

The inverse of a function might not be a function itself. It is
possible to restrict the domain to force the inverse to be a function.

Ex. 5 Find the inverse of $f(x)=3 x^{2}-6$

$$
\text { swap } x, y \quad \begin{aligned}
& y=3 x^{2}-6 \\
& x=3 y^{2}-6 \\
& \frac{x+6}{3}=\frac{3 y^{2}}{3} \\
& x+6
\end{aligned}
$$

$$
x=21
$$

$$
y^{2}=\frac{x+6}{3}
$$

$$
y= \pm \sqrt{\frac{1}{3}(21+6)}
$$

$$
= \pm \sqrt{\frac{1}{3}(27)}
$$

$$
= \pm \sqrt{9}
$$

$$
= \pm 3
$$

$(21,3),(21,-3)$ not a.
function
h. stretch of 3 left by 6

(B)

$$
\begin{aligned}
& D_{f}=\{x \in \mathbb{R} \mid x \leq 0\} \\
& f^{-1}(x)=-\sqrt{\frac{1}{3}(x+6)}
\end{aligned}
$$

Assigned Work:
p. 215 \# 1, 2, 3abci, 5odd, 8odd, 14(i)(iii)(v), 16(i)(iii)(v)

