Unit 3 - Rational Expressions

Equivalent Rational Expressions

Feb 12-9:14 PM

Mar 19-8:55 PM

Mar 19-9:15 PM

See handout

For each of the following rational expressions:

- 1. Determine an equivalent expression algebraically. (Hint: Try common factors)
- 2. Graph the expression.
- 3. Your expressions seem to be equivalent, yet they also have some very important differences. Discuss how you would distinguish between the original expression and your new expression

(a) algebraically. -> State restriction
(b) graphically. -> graph a hole(s)

Mar 20-10:13 AM

Mar 20-10:13 AM

List some mathematical techniques used when determining equivalent expressions for rational functions:

- factoring quadratics common factors
- division

Mar 19-10:24 PM

When graphing rational functions, what noteworthy features may appear on the graph?

* holes when we have of also asymptotes

How can we distinguish between the original and equivalent relations using some written notation?

Assigned Work:

p.40 #1-3 (odd) (fundamentals - optional)
#4-6 (odd), 8, 13, (15)

#16 Sa

WS F., , G

WS F.
$$y = \frac{2x^2 - x - 6}{3x^2 - 7x + 2}$$

$$= \frac{(2x+3)(x-2)}{(3x-1)(x-2)}$$

$$y = \frac{2x+3}{3x-1}, x \neq 2$$

$$3x-1 = 0$$

$$3x = 1$$

$$\sqrt{A}: x = \frac{1}{3}$$

$$x(3x-1) = 2x+3$$

$$3xy-y = 2x+3$$

$$x(3y-2) = y+3$$

$$x(3y-2) = y+3$$

$$x = \frac{y+3}{3y-2}$$

HA : $3y-2=0$

$$3y = 2$$

$$y = \frac{2}{3}$$

Mar 20-11:27 PM

$$\begin{array}{lll}
5 & \text{ae} \\
(a) & \frac{1-x}{x-1} & \text{(e)} & \frac{\chi^2-1}{1-\chi^2} \\
& = \frac{-1x+1}{x-1} & = \frac{(x-1)(x+1)}{(1-x)(1+x)} \\
& = \frac{-1(x+1)}{(x+1)} & = \frac{x-1}{-x+1}, x \neq -1 \\
& = -1, \chi = 1 & = \frac{-1}{-1(x-1)}, \chi \neq -1 \\
& = -1, \chi \neq -1, \chi \neq 1
\end{array}$$

Mar 22-2:09 PM

$$\frac{1}{5} \cdot \frac{1}{x+4} = \frac{1}{2x-2}$$

$$\frac{1}{5} \cdot \frac{1}{5} = \frac{1}{2} \cdot \frac{1}{2}$$

$$\frac{1}{5} \cdot \frac{1}{5} = \frac{1}{2} \cdot \frac{1}{2}$$

$$\frac{1}{5} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2}$$

$$\frac{1}{5} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2}$$

$$\frac{1}{5} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2}$$

$$= \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2$$