Date:

All horizontal transformations of exponential functions can be represented in an <u>equivalent form</u> using only vertical transformations and/or a different base value (*b*). Consider the following examples:

parent function	horizontal transformation(s)	transformed function	algebraic modification	equivalent change without horizontal component
$y=2^x$	reflection	$y = 2^{-x}$	$y = 2^{-x}$ $= \frac{1}{2^{x}}$ $= \left(\frac{1}{2}\right)^{x}$	change base to $\frac{1}{2}$ exponent becomes positive
$y=2^x$	shift left by 1	$y = 2^{x+1}$	$y=2^{x+1}$ $=2^{x}\cdot 2^{1}$ $=2(2^{x})$	vertical stretch by 2
$y=2^x$	compression by 2	$y=2^{2x}$	$y=2^{2x}$ $=(2^{2})^{x}$ $=4^{x}$	change base to 4

Thus we will only concern ourselves with vertical transformations whenever possible. This means that when looking for the equation of an exponential function we will use the form $y=a(b)^x+q$.

Remember:

- 1. The q represents a vertical shift, which determines the y-value of the horizontal asymptote and affects all the other y-values. Always start here, if possible.
- 2. The b represents the common ratio for the exponential function. It can be determined in a few ways:
 - (a) With no vertical shift (q=0), take the ratio of consecutive y-values ($y_2 \div y_1$).
 - (b) It is also possible to take any vertical shift into account by determining the vertical distance from each consecutive point to the <u>shifted</u> horizontal asymptote ($d_{y_2} \div d_{y_1}$). This requires two consecutive points and the equation of the horizontal asymptote.

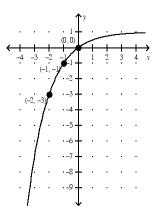
Note: Consecutive points are x-values <u>increasing</u> by the same value each time (i.e., Δx must be constant), reading from left to right. In most cases, $\Delta x = 1$. If not, our equation must be written as $y = a \cdot b^{\frac{x}{\Delta x}} + q$.

- (c) If the asymptote is unknown (not given, not available from graph), you must create a system of equations and solve for any values (a, b, or q) that are unknown.
- 3. Both q (vertical shift) and a (vertical scaling) affect the y-intercept, as well as other y-values. Once you know q from the horizontal asymptote, and b from the ratios, sub the y-intercept to find a.

Example 1: Determine the equation of the exponential function with a common ratio of 3, a y-intercept of 5 and a horizontal asymptote y=-2.

rev. 9. Apr. 2019 page 1 of 2

Example 2: Predict the values in $y=a(b)^x+q$, or at least their signs, from the graph. Then use the points to determine the exact equation of the exponential function and compare to your prediction.

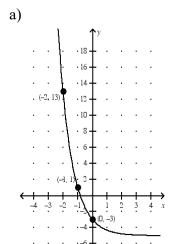


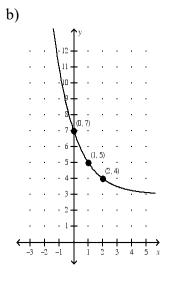
Exercises:

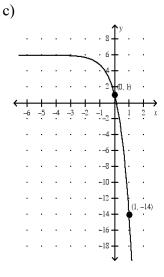
1. Determine the equation of the exponential function with a common ratio of 2, a horizontal asymptote y=4 and passing through the point (2, 10).

2. Determine the equation of the exponential function with a common ratio of 3, a horizontal asymptote y=-4 and a y-intercept of -6.

3. Determine the equations of the exponential functions represented by the graphs below:







4. Create a transformed exponential equation (vertical transformations only) and graph it. Share this graph with a partner/group and have them determine the equation

rev. 9. Apr. 2019 page 2 of 2