\qquad
All horizontal transformations of exponential functions can be represented in an equivalent form using only vertical transformations and/or a different base value (b). Consider the following examples:

parent function	horizontal transformation(s)	transformed function	algebraic modification	equivalent change without horizontal component
$y=2^{x}$	reflection	$y=2^{-x}$	$\begin{aligned} y & =2^{-x} \\ & =\frac{1}{2^{x}} \\ & =\left(\frac{1}{2}\right)^{x} \end{aligned}$	$\begin{aligned} & \text { change base to } \frac{1}{2} \\ & \text { exponent becomes positive } \end{aligned}$
$y=2^{x}$	shift left by 1	$y=2^{x+1}$	$\begin{aligned} y & =2^{x+1} \\ & =2^{x} \cdot 2^{1} \\ & =2\left(2^{x}\right) \end{aligned}$	vertical stretch by 2
$y=2^{x}$	compression by 2	$y=2^{2 x}$	$\begin{aligned} y & =2^{2 x} \\ & =\left(2^{2}\right)^{x} \\ & =4^{x} \end{aligned}$	change base to 4

Thus we will only concern ourselves with vertical transformations whenever possible. This means that when looking for the equation of an exponential function we will use the form $y=a(b)^{x}+q$.

Remember:

1. The q represents a vertical shift, which determines the y-value of the horizontal asymptote and affects all the other y-values. Always start here, if possible.
2. The b represents the common ratio for the exponential function. It can be determined in a few ways:
(a) With no vertical shift $(q=0)$, take the ratio of consecutive y -values ($y_{2} \div y_{1}$).
(b) It is also possible to take any vertical shift into account by determining the vertical distance from each consecutive point to the shifted horizontal asymptote ($d_{y_{2}} \div d_{y_{1}}$). This requires two consecutive points and the equation of the horizontal asymptote.

Note: Consecutive points are x -values increasing by the same value each time (i.e., Δx must be constant), reading from left to right. In most cases, $\Delta x=1$. If not, our equation must be written as $y=a \cdot b^{\frac{x}{\Delta x}}+q$.
(c) If the asymptote is unknown (not given, not available from graph), you must create a system of equations and solve for any values (a, b, or q) that are unknown.
3. Both q (vertical shift) and a (vertical scaling) affect the y-intercept, as well as other y-values. Once you know q from the horizontal asymptote, and b from the ratios, sub the y-intercept to find a.

Example 1: Determine the equation of the exponential function with a common ratio of 3, a y-intercept of 5 and a horizontal asymptote $y=-2$.

Example 2: Predict the values in $y=a(b)^{x}+q$, or at least their signs, from the graph. Then use the points to determine the exact equation of the exponential function and compare to your prediction.

Exercises:

1. Determine the equation of the exponential function with a common ratio of 2 , a horizontal asymptote $y=4$ and passing through the point $(2,10)$.
2. Determine the equation of the exponential function with a common ratio of 3 , a horizontal asymptote $y=-4$ and a y-intercept of -6 .
3. Determine the equations of the exponential functions represented by the graphs below:
a)

b)

c)

4. Create a transformed exponential equation (vertical transformations only) and graph it. Share this graph with a partner/group and have them determine the equation
