Ex.1 A cup of hot cocoa left on a desk in a classroom had its temperature measured once every minute. The graph shows the relationship between the temperature of the cocoa, in degrees Celsius, and time, in minutes. A graph that represents data or a relationship is often referred to a graphical model.

- a) What was the temperature of the cocoa at the start of the experiment? ______
- b) What was the temperature after one hour? _____
- c) What was the temperature of the classroom?
- d) At what time was the cocoa at a temperature of 35°C?
- e) Determine an algebraic model for this graph using *hours* as the unit of time.

f) Modify your model to use *minutes* as a reference of time.

- Ex.2 A tennis ball is dropped from a height of 10 m. Each time the ball touches the ground, it bounces up to 45% of the maximum height of the previous bounce.
- a) Create a table of values to determine the height of the ball for the first 4 bounces. Use this table to graph the height of the ball versus the number of bounces.

Number of Bounces	Height of Ball (m)
0	
1	
2	
3	
4	

b) Determine the equation that models the maximum height of the bounce after *n* bounces. The equation is often referred to as an *algebraic model*.

c) Estimate the number of bounces required for the bounce height to be 10% or less of the starting height.

Assigned Work:

1. The table shows Alex's weekly earnings over a 5-year period.

Year	Earnings (\$)
2004	550.00
2005	566.50
2006	583.50
2007	601.00
2008	619.03

- a) Use the table to construct a graphical model for the data.
- b) Determine an algebraic model for the data.
- c) Predict Alex's weekly earnings in the year 2012.
- d) Predict when Alex might expect to earn more than \$850 per week.
- 2. The table gives the value of Ian's car x years after she purchased it.

Year	Value of the
	Car (\$)
1	12000
2	9600
3	7680
4	6140
5	4920

- a) Use the table to construct a graphical model of the data.
- b) What number is the value of the car approaching (getting closer to)?
- c) Determine the most likely purchase price of the car.
- d) Determine an algebraic model for the data.
- e) Determine the approximate value of the car in 2010, if year 1 represents 2003.
- 3. The population of a small town appears to be increasing exponentially. Town planners need a model for predicting the future population. In 1980, the population was 35 000, and in 1990, the population was 57 010.
 - a) Create an algebraic model for the town's population growth; use a graph if you find it helpful.
 - b) Check your model by using the fact that the population in 1995 was 72 800.
 - c) What will the population be in 2010?
- 4. Text: p.25 # 16