\qquad

Topics:

- Trigonometric ratios (Primary and Reciprocal)
- Sine Law and Cosine Law
- The ambiguous case for sine law
- Word Problems
- Angles on the Cartesian Plane
- Special angles
- Trigonometric Identities
- Solving equations

Suggested review questions to work on:

Make sure you have a complete set of notes and have done all the homework questions first!
pg. 265 \#1 - 5
pg. $313 \# 1-4,6-15,17-19$
pg. $413 \# 10,11,13,14$ use $0 \leq \theta<360^{\circ}$
pg. $416 \# 32,33,35-37$ (obviously not the graphing calculator part) use $0 \leq \theta<360^{\circ}$
note: you are not responsible for radian measure; which is in your textbook but not in this course

Supplementary problems

(These are sample questions for each topic; look at the textbook questions as well!):
\#1: Evaluate each of the following (to 4 decimal places).
a) $\csc 47^{\circ}$
b) $\sin 158^{\circ}$
c) $\sec 16^{\circ}$
d) $\cos 98^{\circ}$
e) $\cot 29^{\circ}$
f) $\tan 118^{\circ}$
\#2: When do you need to consider the ambiguous case of the sine law?
\#3: Solve each of the following triangles - you will either get two triangles, one triangle or no triangles
a) $\angle \mathrm{A}=42^{\circ}$
$\mathrm{a}=30$
$\mathrm{b}=25$
b) $\angle \mathrm{B}=27^{\circ}$
$\mathrm{b}=25$
$\mathrm{a}=30$
c) $\angle \mathrm{E}=38.7^{\circ}$
$\mathrm{e}=10$
$\mathrm{b}=25$
\#4: An airplane flying at a height of 9750 m observes that the angle of depression with one shore of a lake is 32° and the angle of depression with the opposite shore of the lake is 40°. What is the width of the lake, to the nearest metre?
\#5: The interior angles of a triangle are $120^{\circ}, 40^{\circ}$, and 20°. The longest side is 10 cm longer than the shortest side. Determine the perimeter of the triangle to the nearest centimetre.
\#6: Suppose Romeo is serenading Juliet while she is on her balcony. Romeo is facing north and sees the balcony at an angle of elevation of 20°. Paris, Juliet's other suitor, is observing the situation and is facing west. Paris sees the balcony at an angle of elevation of 18°. Romeo and Paris are 100 m apart as shown. Determine the height of Juliet's balcony above the ground, to the nearest metre.

\#7: Predict the quadrant(s) which will contain the terminal arm for the angle in each of the following rations.
a) $\sin \theta=-0.43$
b) $\tan \theta=0.8562$
c) $\sec \theta=-1.7691$
\#8: Given $\cos \theta=\frac{12}{13}$ with the terminal arm of θ in Q 4 , determine the exact value of the other two ratios.
\#9: Determine two angles, one positive and one negative, co-terminal with 115°.
\#10: Determine the measure of the angle $\theta, 0 \leq \theta<360^{\circ}$ if:
a) $\cos \theta=\frac{-1}{2}$
b) $\sin \theta=\frac{\sqrt{3}}{2}$
c) $\cos \theta=\frac{-1}{\sqrt{2}}$ and $\sin \theta=\frac{-1}{\sqrt{2}}$
\#11: Without using your calculator, state the exact values for:
a) $\sin 30^{\circ}$
b) $\cos 45^{\circ}$
c) $\sin 135^{\circ}$
d) $\cos 120^{\circ}$
e) $\sin 240^{\circ}$
f) $\cos 300^{\circ}$
\#12: What is the point (x, y) on the unit circle at an angle of rotation of:
a) 60°
b) 90°
c) 150°
d) 225°
\#13: Find the measure of the angle θ to the nearest degree ($0 \leq \theta<360^{\circ}$).
a) $\sin \theta=-0.4848$
b) $\csc \theta=1.0154$
c) $\cos \theta=-0.4384$
d) $7 \cos \theta+3=5 \cos \theta+4$
e) $\tan 2 \theta=7.1154$
\#14: Find the measure of the angle θ to the nearest tenth of a degree $\left(0 \leq \theta<360^{\circ}\right)$.
a) $\cos ^{2} \theta+3 \cos \theta-4=0$
b) $2 \cos \theta+3 \tan \theta=0$
c) $-10-7 \cos \theta=6 \cos ^{2} \theta-9$
d) $\sec ^{2} \theta=3 \tan ^{2} \theta+\tan \theta$
\#15: Verify the following identities.
a) $\tan \theta+\cot \theta=\sec \theta \csc \theta$
b) $\sin ^{2} \theta \sec ^{2} \theta=\sec ^{2} \theta-1$
c) $\frac{\sin x}{\csc x}+\frac{\cos x}{\sec x}=1$
d) $\sin \theta=\frac{\sec \theta}{\tan \theta+\cot \theta}$
e) $\frac{\tan ^{2} x-1}{\sec ^{2} x}=\frac{\tan x-\cot x}{\tan x+\cot x}$
f) $\sin ^{2} \theta+\tan ^{2} \theta=\sec ^{2} \theta-\cos ^{2} \theta$

Answers to Supplementary Problems:

1. a) 1.3673 b) 0.3746 c) 1.0403 d) -0.1392 e) 1.8040 f$)-1.8807$
2. When you are given SSA (two sides and an angle opposite one of them - the known angle is not contained between given sides)
3. a) $\angle \mathrm{B}=34^{\circ}, \angle \mathrm{C}=104^{\circ}, \mathrm{c}=44$
b) $\angle \mathrm{A}=33^{\circ}, \angle \mathrm{C}=120^{\circ}, \mathrm{c}=48$ or $\angle \mathrm{A}=147^{\circ}, \angle \mathrm{C}=6^{\circ}, \mathrm{c}=5.8$
c) no solution
4. 27000 m
5.35 cm
5. 24 m
6. a) Q3 \& Q4 b) Q1 \& Q3
c) Q2 \& Q3
7. $\sin \theta=\frac{-5}{13}, \tan \theta=\frac{-5}{12}$
8. 475° and -245°, answers may vary.
9. a) 120° and 240° b) 60° and 120° c) 225°
10. a) $\frac{1}{2}$
b) $\frac{1}{\sqrt{2}}$
c) $\frac{1}{\sqrt{2}}$
d) $\frac{-1}{2}$
e) $-\frac{\sqrt{3}}{2}$
f) $\frac{1}{2}$
11. What is the point (x, y) on the unit circle at an angle of rotation of:
a) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
b) $(0,1)$ c) $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
d) $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
12. a) 209° or 331° b) 80° or 100°
c) 116° or 244°
d) 60°, or 300°
e) $41^{\circ}, 131^{\circ}, 221^{\circ}$, or 311°
13. a) 0°
b) 210° or 330°
c) $100^{\circ}, 180^{\circ}$, or 260°
d) $26^{\circ}, 135^{\circ}, 209^{\circ}$, or 315°
