Discrete Functions Review

Make sure you have completed all homework questions.

textbook questions: Pg. 480 #1 - 26 A) Sequences:

- $a, a+d, a+2d, a+3d, \dots$; $t_n=f(n)=a+(n-1)d$ • Arithmetic:
- $a, ar, ar^{2}, ar^{3}, \dots$; $t = f(n) = ar^{n-1}$ • Geometric:
- Recursion Formulas
- Fibonacci Sequence
- Applications of Arithmetic & Geometric Sequences

Supplementary problems:

- 1) Given the formula for the *n*th term, write the first 3 terms of each sequence:
 - a) $t_n = -2n + 1$
- b) $f(n) = \sqrt{n+2}$ c) $t_n = \frac{1}{n}$
- 2) Find the twentieth term, t_{20} , for each sequence below:
 - a) 2, 4, 6, 8,

- b) 2, 4, 8, 16, ...
- 3) Determine the number of terms in the following sequence: 3, 15, 27, ..., 495.
- 4) In a geometric sequence, $t_3 = 36$ and $t_4 = 108$. Find the first three terms of the sequences and t_n .
- 5) Write the first four terms of each sequence:

 - a) $t_1 = 2$, $t_n = 3t_{n-1} + 5$ b) $t_1 = -1$, $t_2 = 1$, $t_n = 2t_{n-2} + 4t_{n-1}$
- 6) Represent the sequence 0, 3, 8, 15, 24, 35,... using a recursion formula, function notation, and the formula for the *n*th term.
- 7) Listeria monocytogenes is a bacteria that rarely causes food poisoning. At a temperature of 10 \pm C, it takes about 7 hours for the bacteria to double. If the bacteria count in a sample of food is 100, how long will it be until the count exceeds 1000 000?
- textbook questions: Pg. 484 #27 38 B) Series:
 - Arithmetic: $S_n = \frac{n}{2} [2a + (n-1)d]$ or $S_n = \frac{n}{2} (a + t_n)$
 - Geometric: $S_n = \frac{a(r^n 1)}{r 1}$
 - Applications of Arithmetic & Geometric Series

<u>Supplementary problems</u>:

- 8) Find the sum of the first nine terms of this sequence. -9, -4, 1, 6, 11, ...
- 9) The first twenty terms of an arithmetic series have a sum of 770. The common difference is 3. What are the first three terms of the series?
- 10) Find the sum: 4 + 12 + 36 + ... + 2916

- 11) A snowball sentence is constructed so that each word has one more letter than the previous word. An example is, "I am not cold today."
 - a) Determine the total number of letters in the sentence (using series).
 - b) Write your own snowball sentence and determine the number of letters in your sentence.
- C) Financial Applications:

textbook questions: Pg. 572 #1 - 8, 11 – 12, 15, 17

- Simple Interest I = Pr t
- Compound Interest $FV = PV(1+i)^n$ (solve problems using the formula)
- Annuities

$$FV = \frac{R[(1+i)^n - 1]}{i}$$

$$FV = \frac{R[(1+i)^n - 1]}{i}$$

$$PV = \frac{R[1 - (1+i)^{-n}]}{i}$$

Supplementary problems:

- 12) You invest \$250 at 4% per annum at a bank that pays simple interest.
 - a) How much simple interest would be earned each year?
 - b) If you kept your money invested for 8 years, how much total simple interest would be earned?
 - c) How much money would be in your bank account after the 8 years if you did not withdraw any money?
 - d) If you doubled the principal, would it double the total interest paid over 8 years?
 - e) If you invested at double the interest rate, would it double the total interest paid over 8 years?
- 13) Meina is investing \$10 000 in a RRSP. She is considering a 9-year plan with an interest rate of 6% per annum, compounded semi-annually, or a 9-year plan with an interest rate of 5.95%, compounded monthly. Which plan should Meina choose? Justify your answer mathematically
- 14) Chamindu makes deposits of \$2000 annually into an account that pays 4% interest, compounded annually.
 - a) How much money will be in the account after a 15-year term?
 - b) How much interest will Chamindu have earned over the 15-year term?
- 15) Find the value of \$1000 invested each month for 2 years at 6%/a compounded monthly.
- 16) A small business has borrowed \$10 000 and must begin to repay it today. The payments are to be made at the end of every 6 months over a 5-year term. Interest on the loan is 9% compounded semi-annually. What will be the size of each regular payment?
- 17) A Canadian mortgage of \$95 400 has an interest rate of 8.75%/annum, a 5-year term, and an amortization period of 25 years.
- a) Determine the equivalent interest rate.
- Determine the monthly payment. b)

Answers to Supplementary Problems:

2) a)
$$t_{20}=40$$

b)
$$t_{20} = 1048576$$

3)
$$n = 42$$

4)
$$t_n = 4(3)^{n-1}$$

$$t_n = t_{n-1} + 2n - 1$$

$$f(n)=f(n-1)+2n-1$$

$$S_0 = 99$$

10)
$$S_7 = 4372$$

8)
$$s_9=99$$
 9) 10, 13, 16 10) $s_7=4372$ 11) a) 15 b) answers vary 12) a) \$10 b) \$80 c) \$330

12d) I = (2P)rt $\mathring{\mathfrak{D}}$ Yes, the total interest earned would double e) I = P(2r)t $\mathring{\mathfrak{D}}$ Yes, the total interest earned would double.

13) semi-annually:
$$A = 10000 \left(1 + \frac{0.06}{2}\right)^{18} = \$17024.33$$
; monthly: $A = 10000 \left(1 + \frac{0.0595}{12}\right)^{108} = \17060.43

14) a) \$40 047.18

$$A = 10000 \left(1 + \frac{0.00}{2} \right) = \$170$$

b) \$10 047.18

17) (a) 0.007162 (b) \$774.27