

$$
y=-x+2 \quad y=2 x+4
$$

- slopes are different ($m_{1}=-1$ and $m_{2}=2$)
- y-intercepts are different (4 and 0)
- one solution

$$
y=-x+4 \quad y=2 x+4
$$

- slopes are different $\left(m_{1}=-1\right.$ and $\left.m_{2}=2\right)$
- y-intercepts are the same $\left(y_{\mathrm{int}}=4\right)$
- one solution

For one solution, only the slopes must be different. The y-intercept does not matter.

$$
4 x-4 y=12 \quad y=x-3
$$

- slopes are equal ($m=1$)
- y-intercepts are equal (-3)
- infinite solutions (all points)

For infinite solutions, the lines are identical. The slopes and the y-intercepts are the same.

- slopes are equal ($m=2$)
- y-intercepts are different (4 and 0)
- no solution

For no solution, the lines are parallel.
The slopes are the same and the y-intercepts are different.

