Name: \qquad

MCR3U - WS - Determining Transformations from Two Graphs

1. The parent radical function, , is shown (dotted line), along with the transformed function (solid line). Determine the transformations and write the equation of the transformed function in both function notation and as a transformed radical function ($\mathrm{x}-\mathrm{y}$ notation).

2. The parent radical function, , is shown (dotted line), along with the transformed function (solid line). Determine the transformations and write the equation of the transformed function in both function notation and as a transformed radical function ($\mathrm{x}-\mathrm{y}$ notation).

3. The parent radical function, $y=\sqrt{x}$, is shown (dotted line), along with the transformed function (solid line).

Determine the transformations and write the equation of the transformed function in both function notation and as a transformed radical function ($\mathbf{x}-\mathrm{y}$ notation).

4. The parent radical function, $y=\sqrt{x}$, is shown (dotted line), along with the transformed function (solid line). Determine the transformations and write the equation of the transformed function in both function notation and as a transformed radical function ($x-y$ notation).

5. The parent reciprocal function, $f(x)=\frac{1}{x}$, is shown (dotted line), along with the transformed function (solid line). Determine the transformations and write the equation of the transformed function in both function notation and as a transformed reciprocal function ($x-y$ notation).

6. The parent reciprocal function, $f(x)=\frac{1}{x}$, is shown (dotted line), along with the transformed function (solid line). Determine the transformations and write the equation of the transformed function in both function notation and as a transformed reciprocal function (x - y notation).

7. The parent absolute value function, , is shown (dotted line), along with the transformed function (solid line). Determine the transformations and write the equation of the transformed function in both function notation and as a transformed absolute value function ($\mathbf{x}-\mathrm{y}$ notation).

8. The parent absolute value function, , is shown (dotted line), along with the transformed function (solid line). Determine the transformations and write the equation of the transformed function in both function notation and as a transformed absolute value function ($x-y$ notation).

9. The graph of $y=f(x)$ is shown (dotted line). List the transformations (using proper terminology and conventions) and write the equation using function notation.

10. The graph of $y=f(x)$ is shown (dotted line). List the transformations (using proper terminology and conventions) and write the equation using function notation.

11. The graph of $y=f(x)$ is shown (dotted line). List the transformations (using proper terminology and conventions) and write the equation using function notation.

12. The graph of $y=f(x)$ is shown (dotted line). List the transformations (using proper terminology and conventions) and write the equation using function notation.

13. The graph of $y=f(x)$ is shown (dotted line). List the transformations (using proper terminology and conventions) and write the equation using function notation.

14. The graph of $y=f(x)$ is shown (dotted line). List the transformations (using proper terminology and conventions) and write the equation using function notation.

15. The graph of $y=f(x)$ is shown (dotted line). List the transformations (using proper terminology and conventions) and write the equation using function notation.

16. The graph of $y=f(x)$ is shown (dotted line). List the transformations (using proper terminology and conventions) and write the equation using function notation.

MCR3U - WS - Determining Transformations from Two Graphs

Answer Section

1. ANS:
$\mathrm{y}=\frac{1}{2} f(\mathrm{x}+2)-5$.
PTS: 1
2. ANS:
$\mathrm{y}=-2 f(\mathrm{x}+3)+2$.
PTS: 1
3. ANS:
$\mathrm{y}=-f[5(\mathrm{x}-1)]-2$.
PTS: 1
4. ANS:
$\mathrm{y}=f\left[-\frac{1}{2}(\mathrm{x}-3)\right]-2$.
PTS: 1
5. ANS:
$\mathrm{y}=\frac{1}{4} f(\mathrm{x}-3)+2$.
PTS: 1
6. ANS:
$\mathrm{y}=f(\mathrm{x}+5)-2$.
PTS: 1
7. ANS:
$\mathrm{y}=-f(\mathrm{x}+3)-5$.
PTS: 1
8. ANS:
$\mathrm{y}=-\frac{1}{4} f(\mathrm{x}+1)-3$.
PTS: 1
9. ANS:
$\mathrm{y}=-\frac{1}{2} f[-(\mathrm{x}+1)]-2$
PTS: 1
10. ANS:
$\mathrm{y}=-f\left(\frac{1}{3} \mathrm{x}\right)-4$

PTS: 1
11. ANS:
$\mathrm{y}=\frac{1}{2} f\left[\frac{1}{2}(\mathrm{x}+2)\right]+1$
PTS: 1
12. ANS:
$\mathrm{y}=\frac{1}{2} f[-(\mathrm{x}+1)]$

PTS: 1
13. ANS:
$\mathrm{y}=-\frac{1}{3} f\left[-\frac{1}{2}(\mathrm{x}-4)\right]-4$

PTS: 1
14. ANS:
$\mathrm{y}=\frac{1}{2} f\left[\frac{1}{2}(\mathrm{x}+1)\right]+4$

PTS: 1
15. ANS:
$\mathrm{y}=\frac{1}{4} f\left[\frac{1}{3}(\mathrm{x}+3)\right]-5$

PTS: 1
16. ANS:
$\mathrm{y}=-2 f\left[\frac{1}{2}(\mathrm{x}-5)\right]+1$
PTS: 1

