MCR3U - WS - Determining Transformations from Two Graphs

1. The parent radical function, , is shown (dotted line), along with the transformed function (solid line). Determine the transformations and write the equation of the transformed function in **both function notation and as a transformed radical function (x-y notation)**.

2. The parent radical function, , is shown (dotted line), along with the transformed function (solid line). Determine the transformations and write the equation of the transformed function in **both function notation and as a transformed radical function (x-y notation)**.

3. The parent radical function, $y = \sqrt{x}$, is shown (dotted line), along with the transformed function (solid line). Determine the transformations and write the equation of the transformed function in **both function notation and as a transformed radical function (x-y notation)**.

4. The parent radical function, $y = \sqrt{x}$, is shown (dotted line), along with the transformed function (solid line). Determine the transformations and write the equation of the transformed function in **both function notation and as a transformed radical function (x-y notation)**.

5. The parent reciprocal function, $f(x) = \frac{1}{x}$, is shown (dotted line), along with the transformed function (solid line). Determine the transformations and write the equation of the transformed function in **both function notation and as a transformed reciprocal function (x-y notation)**.

6. The parent reciprocal function, $f(x) = \frac{1}{x}$, is shown (dotted line), along with the transformed function (solid line). Determine the transformations and write the equation of the transformed function in **both function notation and** as a transformed reciprocal function (x-y notation).

7. The parent absolute value function, , is shown (dotted line), along with the transformed function (solid line). Determine the transformations and write the equation of the transformed function in **both function notation and as a transformed absolute value function (x-y notation)**.

8. The parent absolute value function, , is shown (dotted line), along with the transformed function (solid line). Determine the transformations and write the equation of the transformed function in **both function notation and as a transformed absolute value function (x-y notation)**.

9. The graph of y = f(x) is shown (dotted line). List the transformations (using proper terminology and conventions) and write the equation using function notation.

10. The graph of y = f(x) is shown (dotted line). List the transformations (using proper terminology and conventions) and write the equation using function notation.

11. The graph of y = f(x) is shown (dotted line). List the transformations (using proper terminology and conventions) and write the equation using function notation.

12. The graph of y = f(x) is shown (dotted line). List the transformations (using proper terminology and conventions) and write the equation using function notation.

13. The graph of y = f(x) is shown (dotted line). List the transformations (using proper terminology and conventions) and write the equation using function notation.

14. The graph of y = f(x) is shown (dotted line). List the transformations (using proper terminology and conventions) and write the equation using function notation.

x

5 6 7 8 9

í

15. The graph of y = f(x) is shown (dotted line). List the transformations (using proper terminology and conventions) and write the equation using function notation.

16. The graph of y = f(x) is shown (dotted line). List the transformations (using proper terminology and conventions) and write the equation using function notation.

-2

-3 -4

MCR3U - WS - Determining Transformations from Two Graphs Answer Section

```
1. ANS:
   y = \frac{1}{2}f(x+2) - 5.
   PTS: 1
2. ANS:
   y = -2f(x + 3) + 2.
   PTS: 1
3. ANS:
   y = -f[5(x-1)] - 2.
   PTS: 1
4. ANS:
   y = f[-\frac{1}{2}(x-3)] - 2.
   PTS: 1
5. ANS:
   y = \frac{1}{4}f(x-3) + 2.
   PTS: 1
6. ANS:
   y = f(x + 5) - 2.
   PTS: 1
7. ANS:
   y = -f(x + 3) - 5.
   PTS: 1
8. ANS:
   y = -\frac{1}{4}f(x+1) - 3.
   PTS: 1
9. ANS:
   y = -\frac{1}{2}f[-(x+1)] - 2
   PTS: 1
```

10. ANS:

$$y = -f(\frac{1}{3}x) - 4$$

PTS: 1
11. ANS:
 $y = \frac{1}{2}f[\frac{1}{2}(x+2)] + 1$
PTS: 1
12. ANS:
 $y = \frac{1}{2}f[-(x+1)]$
PTS: 1
13. ANS:
 $y = -\frac{1}{3}f[-\frac{1}{2}(x-4)] - 4$
PTS: 1
14. ANS:
 $y = \frac{1}{2}f[\frac{1}{2}(x+1)] + 4$
PTS: 1
15. ANS:
 $y = \frac{1}{4}f[\frac{1}{3}(x+3)] - 5$
PTS: 1
16. ANS:
 $y = -2f[\frac{1}{2}(x-5)] + 1$
PTS: 1