<u>Unit 7: Discrete Functions</u> <u>Arithmetic & Geometric Sequences</u>

Jan 6/2020

Ex.1 Find the next 3 terms in each sequence:

May 27-2:43 PM

Ex.2 For the sequence 3, 9, 15, 21, ...

- (a) find the 100^{th} term. +6+6+6
- (b) find a general expression for the nth term.

(a)
$$t_{100} = 3 + 99(6)$$

Start

(b)
$$t_n = 3 + (n-1)(6)$$

An <u>arithmetic sequence</u> is a *linear function* where the difference between consecutive terms is a constant (called the <u>common difference</u>, *d*).

The first term, t_1 , or f(1), is a.

In general, the sequence is:

$$a, a+d, a+2d, a+3d, ...$$

The nth term is:

$$t_n = a + (n-1)d$$
 or $f(n) = a + (n-1)d$

May 28-9:27 PM

Ex.3 How many terms are in the finite sequence

16, 7, -2, -11, ..., -245?

$$d = -9$$

$$a = 1b = t_{1}$$

$$t_{n} = a + (n-1)d$$

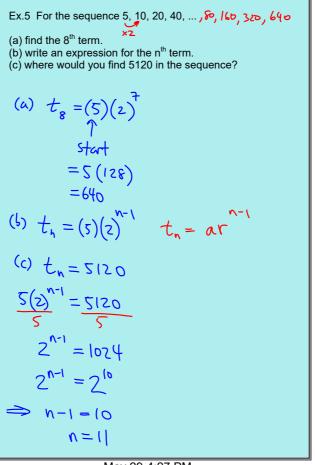
$$t_{n} = 1b + (n-1)(-9)$$
Set
$$t_{n} = -245$$

$$-245 = 1b + (n-1)(-9)$$

$$-261 = (n-1)(-9)$$

$$-261 = n-1$$

$$-9 = n-1$$


$$n=30$$

Ex.4 Find the next three terms in each sequence:

(b) 1, -2, 4, -8, ...,
$$16_1 - 32$$
, 64
 (-2)
 $t_n = (1)(-2)^{n-1}$

(c) 27, 9, 3, 1, ...,
$$\frac{1}{3}$$
, $\frac{1}{9}$, $\frac{1}{27}$
 $\frac{1}{3}$

May 29-4:25 PM

May 29-4:27 PM

A geometric sequence occurs when there is a common ratio (r) between consecutive terms.

The first term, t_1 , or f(1), is a.

In general, the sequence is:

$$a, ar, ar^2, ar^3, \dots$$

The nth term is:

$$t_n = ar^{n-1} \quad \text{or} \quad f(n) = ar^{n-1}$$

May 29-4:29 PM

Ex.6 Is each sequence geometric? If so, state the common ratio.

(a)
$$2, -8, 32, -128, \dots$$

(b)
$$x, 2x, 3x, 4x,...$$

(c)
$$x^7, x^{14}, x^{28}, x^{56}, \dots$$

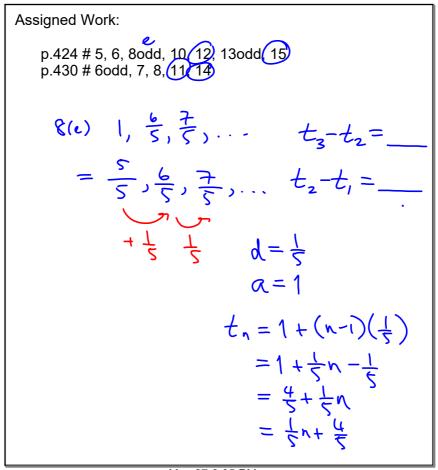
(d)
$$2x^7$$
, $4x^{10}$, $8x^{13}$, $16x^{16}$, ...

Ex.7 Given
$$t_{5} = 1875$$
 and $t_{7} = 46875$, find t_{n} (geometric).

$$t_{n} = \alpha r^{n-1}$$

$$1875 = \alpha r^{4} \bigcirc 46875 = \alpha r^{6} \bigcirc 2$$

$$25 = r^{2}$$


$$r = \pm 5$$
Sub $r = 5$ in $\bigcirc 5$ sub $r = -5$ in $\bigcirc 1875 = \alpha(5)^{4}$

$$1875 = 625\alpha$$

$$\alpha = 3$$

$$t_{n} = 3(5)^{n-1}$$
 or $t_{n} = 3(-5)^{n-1}$

May 29-4:38 PM

May 27-3:05 PM

12
$$P = $5000$$
 $I = 3.5%$

Simple interest

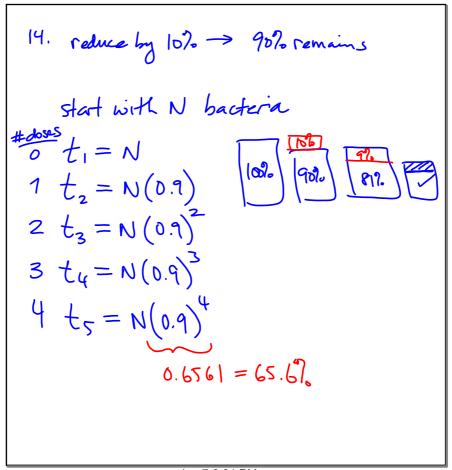
 $t_1 = 5000$ $t_2 = 5000 + (0.035)(5000)$ each year.

Therest in one year

 $t_3 = 5000 + 2(175)$ $d = 175$
 $t_4 = 5000 + 3(175)$ $a = 7000$
 $t_{n} = 5000 + (n-1)(175)$
 $2800 = (n-1)(175)$
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 177
 17

Jan 7-2:09 PM

15.
$$t_{50} = 238$$
 $t_{93} = 539$
 $a+(49)d = 238 @ a+92d = 539 @ a+49d = 238 @ a+49d = 238 @ a+49d = 238 @ a+49d = 301


 $d = 7$

Sub $d = 7$ into (1)

 $a+(49)(7) = 238$
 $a = -105$
 $t_{n} = -105 + (n-1)(7)$
 $= -105 + 7n - 7$
 $= -112 + 7n$$

Jan 7-2:15 PM

Jan 7-2:19 PM

