Recursion Formulae & Recursive Sequences

Determine the pattern in the Fibonacci sequence:

1, 1, 2, 3, 5, 8, ...
$$n \in \mathbb{N}$$
 $t_1 = 1$
 $t_2 = 1$
 $t_3 = t_2 + t_1$
 $t_4 = t_3 + t_2$
 $t_n = t_{n-1} + t_{n-2}$

May 27-2:43 PM

Recursion & Recursive Sequences

Jan 7/2020

A sequence is <u>recursive</u> if a new term is found using one or more previous terms. The starting term(s) must be provided as part of the recursive definition.

For example, the Fibonacci sequence is:

$$t_n = t_{n-1} + t_{n-2}$$
, where $t_1 = 1$ and $t_2 = 1$, $n > 2$

Ex. Find the first four terms in each of the following sequences.

a)
$$t_0 = t_{0-1} - 2$$
, where $t_1 = 3$

$$t_1 = 3$$
 $t_2 = 3-2$ $t_3 = 1-2$ $t_4 = -1-2$

b) f(n) = f(n - 1) + 1.5, where f(1) = -0.5

$$f(1) = -0.5$$
 $f(2) = -0.5 + 1.5$
= 1
 $f(3) = |+|.5$ $f(4) = 2.5 + 1.5$
= 2.7

$$f(3) = |+|.7$$
 $f(4) = 2.5 + |.5$

Ex. Determine a recursion formula for each of the following sequences, then write an explicit formula if possible (an explicit formula does not rely on recursion).

a) -3, 6, -12, 24, ...

$$t_{n} = -2t_{n-1}, t_{1} = -3$$

or

$$t_{n} = -3(-2)^{n-1} \text{ explicit general}$$

b) $f(1) = 2$, $f(2) = 6$, $f(3) = 10$, $f(4) = 14$, ...

2) 6, 10, 14, ...

 $t_{n} = t_{n-1} + t$, $t_{1} = 2$

or

c) 3, 5, 8, 12, ...

$$t_{n} = 2 + (n-1)(4)$$
 $t_{2} + t_{3} + t_{4}$

not arithmed:

 $t_{1} = 3$
 $t_{2} = 5 = 3 + 2 = 3 + n$
 $t_{3} = 8 = 5 + 3 = 5 + n$
 $t_{4} = 12 = 8 + 4 = 8 + n$
 $t_{5} = 4 + 1 = 8 + n$
 $t_{7} = 4 + n$
 $t_{7} = 4 + n$
 $t_{8} = 5 + 3 = 5 + n$
 $t_{8} = 5 + 3 = 5 + n$
 $t_{9} = 12 = 8 + 4 = 8 + n$
 $t_{1} = 3$

May 27-3:02 PM

Recursion can also be applied to geometric figures to produce **fractals**, patterns that repeat themselves at any scale (zooming in or out).

One of the simplest and most famous is the

Sierpinski Triangle:

Pascal's Triangle is recursively defined, where each term in any row is the sum of the terms diagonally above that term. The first row is 1.

Jan 7-8:34 AM

May 30-10:57 PM

May 30-10:57 PM

Jan 7-10:57 AM