\qquad

In the functions unit we studied the Reciprocal Function, which is in the family of Rational Functions. We looked at $y=\frac{1}{x}$

Use your knowledge of functions (and transformations) to sketch the graph of each of the following.
a) $y=\frac{1}{x+3}$ horizontal shift left 3
b) $y=\frac{1}{x-1} \quad$ h. shift right by 1

Remember: The zeros of the denominator result in vertical asymptotes.

* What happens when a factor of the denominator is also a factor of the numerator?

If a factor in the denominator divides out with the same factor in the numerator, the restriction takes the shape of hole in the graph.

If a factor in the denominator does not divide out, the restriction is a vertical asymptote.
Ex: Simplify the equation of each of the functions, decide whether you have a hole and/or a vertical asymptote, and sketch the graph of the function.

$$
\begin{aligned}
& \text { a) } y=\frac{3 x-1}{3 x^{2}+5 x-2} \\
& =\frac{3 x-1}{(x+2)(3 x-1)} \\
& =\frac{1}{x+2}, \begin{array}{l}
V A \\
x \neq-2 \\
x \neq \frac{1}{3}
\end{array} \frac{2}{1 x} \\
& \begin{array}{cc}
M-6 \\
A & 5
\end{array} \\
& N \frac{6}{3}, \frac{-1}{3 x} \\
& x+2=0 \quad 3 x-1=0 \\
& x=-2
\end{aligned}
$$

Sketch:
hole when

\qquad
b) $y=\frac{x^{2}-1}{x+1}$

$$
\begin{aligned}
& =\frac{(x-1)(x+1)}{x+1} \\
& =\underbrace{x-1}_{\text {straight line }}, x \neq-1
\end{aligned}
$$

c) $y=\frac{x+1}{x^{2}-1}$

$$
\begin{aligned}
& =\frac{x+1}{(x-1)(x+1)} \\
& =\frac{1}{x-1}, x \neq 1, x \neq-1 \\
& \text { VA hole }
\end{aligned}
$$

hole at

$$
\begin{aligned}
x & =-1 \\
y & =x-1 \\
& =(-1)-1 \\
& =-2
\end{aligned}
$$

Sketch:

hole at

$$
\begin{aligned}
x & =-1 \\
y & =\frac{1}{x-1} \\
x & =\frac{1}{-1-1} \\
& =\frac{1}{-2} \\
& =-\frac{1}{2}
\end{aligned}
$$

$$
\begin{align*}
& \text { d) } y=\frac{2 x^{2}-7 x+6}{x-2} \\
& =\frac{(2 x-3)(x-2)}{x-2} \\
& =2 x-3, x \neq 2 \\
& \text { hole } \\
& y=2(2)-3 \\
& =4-3 \tag{2,1}\\
& =1 \\
& \begin{array}{lr}
M & 12 \\
A & -7
\end{array} \\
& N \frac{-3}{2 x}-\frac{4}{2} \\
& \downarrow
\end{align*}
$$

\qquad
e)

$$
\begin{array}{rlr}
y & =\frac{x^{2}-9}{4 x+12} \\
& =\frac{(x-3)(x+3)}{4(x+3)} \quad \begin{array}{l}
M=\frac{1}{4} \\
y-\text { wt }= \\
x-\text { int }= \\
\end{array}=\frac{x-3}{4}, x \neq-3 \\
& =\frac{1}{4}(x-3), x \neq-3 \\
& =\frac{1}{4} x-\frac{3}{4}, x \neq-3
\end{array}
$$

$$
\begin{aligned}
& \frac{x-\text { int? }}{\text { set } y=0} \\
& y=\frac{x-3}{4} \\
& 0=\frac{x-3}{4} \\
& 0=x-3 \\
& 3=x
\end{aligned}
$$

f) $y=\frac{4 x-10}{4 x^{2}-25}$

Sketch:

hole at $x=\frac{5}{2}=2.5$

$$
\begin{aligned}
y & =\frac{2}{2 x+5} \\
& =\frac{2}{2\left(\frac{5}{x}\right)+5} \\
& =\frac{2}{10}=\frac{1}{5}
\end{aligned}
$$

